Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(46): 43442-43453, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027349

RESUMO

A combined study using the surface-enhanced Raman scattering (SERS) technique and quantum chemical calculations was carried out to elucidate the adsorption behavior of sulfathiazole, an antibiotic drug, on gold nanoparticles. The tetrahedral Au20 cluster was used as a simple model to mimic a nanostructured gold surface. Computations using density functional theory with the PBE functional were performed in both the gas phase and aqueous medium using a continuum model. The drug is found to bind to the Au metals via the nitrogen of the thiazole ring. The interaction is also partially stabilized by the ring-surface π coupling rather than a sideway adsorption as previously proposed. In an aqueous solution, the drug molecule mainly exists as a deprotonated form, which gives rise to a much greater affinity toward Au nanoparticles as compared to the neutral forms. The drug adsorption further induces a significant alteration on the energy gap of the gold cluster Aun, which could result in an electrical noise. Notable SERS signals below 1600 cm-1, which result from a coupling of several vibrations including the ring breathing, C-C stretching, and N-H bending, could be employed for both qualitative and quantitative detection and assessment of sulfathiazole at trace concentrations.

2.
Nanoscale Adv ; 5(20): 5543-5561, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37822906

RESUMO

In this study, we assessed the controlled synthesis and efficacy of surface-enhanced Raman scattering (SERS) on two distinct types of star-like Au@Ag core-shell nanoarrays. These nanoarrays were designed based on gold nanostars (AuNSs), which were synthesized with and without CTAB surfactant (AuNSs-CTAB and AuNSs-FS, respectively). The AuNS-FS nanoparticles were synthesized via a novel modification process, which helped overcome the previous limitations in the free-surfactant preparation of AuNSs by significantly increasing the number of branches, increasing the sharpness of the branches and minimizing the adsorption of the surfactant on the surface of AuNSs. Furthermore, the differences in the size and morphology of these AuNSs in the created nanoarrays were studied. To create the nanoarrays, a three-step method was employed, which involved the controlled synthesis of gold nanostars, covering them with a silver layer (AuNSs-FS@Ag and AuNSs-CTAB@Ag), and finally self-assembling the AuNS@Ag core-shelled nanoparticles via the liquid/liquid self-assembly method. AuNSs-FS@Ag showed higher ability in forming self-assembled nanoarrays than the nanoparticles prepared using CTAB, which can be attributed to the decrease in the repulsion between the nanoparticles at the interface. The nano-substrates developed with AuNSs-FS@Ag possessed numerous "hot spots" on their surface, resulting in a highly effective SERS performance. AuNSs-FS featured a significantly higher number of sharp branches than AuNSs-CTAB, making it the better choice for creating nanoarrays. It is worth mentioning that AuNSs-CTAB did not exhibit the same benefits as AuNSs-FS. The morphology of AuNSs with numerous branches was formed by controlling the seed boiling temperature and adding a specific amount of silver ions. To compare the SERS activity between the as-prepared nano-substrates, i.e., AuNS-CTAB@Ag and AuNS-FS@Ag self-assembled nanoarrays, low concentrations of crystal violet aqueous solution were characterized. The results showed that the developed AuNSs-FS@Ag could detect CV at trace concentrations ranging from 1.0 ng mL-1 to 10 ng mL-1 with a limit of detection (LOD) of 0.45 ng mL-1 and limit of quantification (LOQ) of 1.38 ng mL-1. The nano-substrates remained stable for 42 days with a decrease in the intensity of the characteristic Raman peaks of CV by less than 7.0% after storage. Furthermore, the spiking method could detect trace amounts of CV in natural water from the Dong Nai River with concentrations as low as 1 to 100 ng mL-1, with an LOD of 6.07 ng mL-1 and LOQ of 18.4 ng mL-1. This method also displayed good reproducibility with an RSD value of 5.71%. To better understand the impact of CTAB stabilization of the Au@Ag star-like nanoparticles on their surface-enhanced Raman scattering (SERS) performance, we conducted density functional theory (DFT) calculations. Our research showed that the preparation of AuNSs-FS@Ag via self-assembly is an efficient, simple, and fast process, which can be easily performed in any laboratory. Furthermore, the research and development results presented herein on nanoarrays have potential application in analyzing and determining trace amounts of organic compounds in textile dyeing wastewater.

3.
RSC Adv ; 12(54): 34831-34842, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540228

RESUMO

A novel single-step and template-free procedure, including controlled synthesis of gold flowers (AuNFs), conjugation to a 4-MBA reporter, and stabilization with chitosan, is proposed to develop the SERS tags-based nanoparticles for trace detection of heparin. This SERS detection assay is based on the aggregation/non-aggregation balance of AuNFs-4-MBA@chitosan nanoparticles, which was induced by adding a very low concentration of heparin in the as-synthesized colloidal solutions. SERS-tag colloids are prepared by mixing chitosan with HAuCl4 and 4-mercapto benzoic acid before being reduced with ascorbic acid under appropriate pH conditions. The formed AuNFs-4-MBA@chitosan nanoparticles were positively charged with high stability and well-dispersed in aqueous media. Based on understanding each reaction component's role in the preparation of the SERS tag colloid, we aim to simplify the controlled synthesis and Raman probe conjugation process. The average size of AuNFs is below 90 nm, fine-tuned in shape and effectively conjugated to the Raman reporter molecules 4-MBA. These as-prepared SERS tag-based AuNFs have good biocompatibility and are virtually non-toxic, as studied with fibroblast and MCF-7 cells. Through these SERS-tag colloids, the trace detection of heparin is improved, with a wide detection window (0.01 to 100 ppm), high reproducibility (RSD value of 3.56%), limit of detection (LOD) of 0.054 ppm, and limit of quantification (LOQ) of 0.17 ppm. Comparison experiments show that the SERS-tag colloids possess good selectivity over other ions, and organic and amino acid substances. The results provide the capability and the potential for application under complex biological conditions and future biosensing based on SERS signal amplification.

4.
RSC Adv ; 12(35): 22815-22825, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36105964

RESUMO

Developing SERS substrates based on individual gold and silver metals, either with rough surfaces or bare nanoparticles, has certain limitations in practical analysis applications. In order to improve the range of applications of the noble metallic substrates, a comprehensive approach has been proposed for preparing non-traditional SERS nano-substrates by combining tip-enhanced gold nanostars and Raman signal amplification of the silver layer. This preparation process is conducted in two steps, including tuning the sharpness and length of tips by a modified seed growth method followed by coating the silver layer on the formed star-shaped nanoparticles. The obtained AuNS-Ag covered with an average size of around 100 nm exhibited interesting properties as a two-component nano-substrate to amplify the activities in SERS for detecting thiram. The controllable and convenient preparation route of gold nanostars is based on the comproportionation reaction of Au seed particles with Au(iii) ions, achieved by governing the stirring times of the mixture of the Au seed and the growth solution. Thus, the citrate-seed particles decreased in size (below 2 nm) and grew into nanostars with sharp tips. The thickness of Ag covering the Au particles' surface also was appropriately controlled and the tips were still exposed to the outside, which is a benefit for matching with the source excitation wavelength to achieve good SERS performance. The Raman signals of thiram can be instantly and remarkably detected with the enhancement of the substrates. Thiram can be determined without any pretreatment. It was found that the limit of detection for thiram is 0.22 ppm, and the limit of quantification is 0.73 ppm. These experimental results shed some light on developing the SERS method for detecting pesticide residue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...