Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 5(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34470179

RESUMO

The increased sensitivity of modern hyperspectral line-scanning systems has led to the development of imaging systems that can acquire each line of hyperspectral pixels at very high data rates (in the 200-400 Hz range). These data acquisition rates present an opportunity to acquire full hyperspectral scenes at rapid rates, enabling the use of traditional push-broom imaging systems as low-rate video hyperspectral imaging systems. This paper provides an overview of the design of an integrated system that produces low-rate video hyperspectral image sequences by merging a hyperspectral line scanner, operating in the visible and near infra-red, with a high-speed pan-tilt system and an integrated IMU-GPS that provides system pointing. The integrated unit is operated from atop a telescopic mast, which also allows imaging of the same surface area or objects from multiple view zenith directions, useful for bi-directional reflectance data acquisition and analysis. The telescopic mast platform also enables stereo hyperspectral image acquisition, and therefore, the ability to construct a digital elevation model of the surface. Imaging near the shoreline in a coastal setting, we provide an example of hyperspectral imagery time series acquired during a field experiment in July 2017 with our integrated system, which produced hyperspectral image sequences with 371 spectral bands, spatial dimensions of 1600 × 212, and 16 bits per pixel, every 0.67 s. A second example times series acquired during a rooftop experiment conducted on the Rochester Institute of Technology campus in August 2017 illustrates a second application, moving vehicle imaging, with 371 spectral bands, 16 bit dynamic range, and 1600 × 300 spatial dimensions every second.

2.
Conserv Biol ; 29(2): 350-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25319024

RESUMO

In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação
3.
Inorg Chem ; 36(11): 2406-2412, 1997 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-11669878

RESUMO

The 2,3-disulfidothienoquinoxaline complexes of Cp(2)Mo and dppePd and the 2,3-disulfidothienopyridine complexes of Cp(2)Mo were obtained as products from the S(8) oxidation of the corresponding metallo-1,2-enedithiolate complexes. The analogous 2-sulfido-3-oxidothienoquinoxaline complexes of Cp(2)Ti, Cp(2)Mo, dppPd, and dppePt were prepared from 1-(quinoxalin-2-yl)-2-bromoethanone and the corresponding polysulfido complex. Both Cp(2)Mo{S(2)C(10)H(4)N(2)S} and Cp(2)Mo{SOC(10)H(4)N(2)S} have been characterized crystallographically. These complexes contain an extended planar ring where the metal is bound to substituents at the 2- and 3-positions of the thiophene ring. The oxidation products of the Cp(2)Mo derivatives all have EPR g values near 1.98 and (97/95)Mo hyperfine of

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...