Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(10): 5759-5768, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36862607

RESUMO

Understanding breaking and formation of Lewis bonds at an electrified interface is relevant to a large range of phenomena, including electrocatalysis and electroadsorption. The complexities of interfacial environments and associated reactions often impede a systematic understanding of this type of bond at interfaces. To address this challenge, we report the creation of a main group classic Lewis acid-base adduct on an electrode surface and its behavior under varying electrode potentials. The Lewis base is a self-assembled monolayer of mercaptopyridine and the Lewis acid is BF3, forming a Lewis bond between nitrogen and boron. The bond is stable at positive potentials but cleaves at potentials more negative of approximately -0.3 V vs Ag/AgCl without an associated current. We also show that if the Lewis acid BF3 is supplied from a reservoir of Li+BF4- electrolyte, the cleavage is completely reversible. We propose that the N-B Lewis bond is affected both by the field-induced intramolecular polarization (electroinduction) and by the ionic structures and ionic equilibria near the electrode. Our results indicate that the second effect is responsible for the Lewis bond cleavage at negative potentials. This work is relevant to understanding the fundamentals of electrocatalytic and electroadsorption processes.

2.
J Am Chem Soc ; 144(18): 8178-8184, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35476459

RESUMO

Dative bonding or Lewis acid-base chemistry underpins a large number of chemical phenomena in a variety of fields, such as catalysis, metal-ligand interactions, and surface chemistry. Developing light-controlled Lewis acid-base interactions could offer a new way of controlling and understanding such phenomena. Photoinduced proton transfer, that is, excited-state Brønsted acidity and basicity, has been extensively studied and applied. Here, in direct analogy to excited-state Brønsted basicity, we show that exciting a photobasic molecule with light generates a thermodynamic drive for the transfer of a Lewis acid from a donor to a photobasic molecule. We have used the archetypal BF3 as our Lewis acid and our photoactive Lewis bases are a family of quinolines, which are known Brønsted photobases as well. We have constructed the experimental Förster cycle for this system and have verified it computationally to demonstrate that a significant drive (0.2-0.7 eV) exists for the transfer of BF3 to a photoexcited quinoline. The magnitude of this drive is similar to those reported for Brønsted photobasicity in quinolines. Computational results from TDDFT and energy decomposition analysis show that the origin of such an effect is similar to the Brønsted photoactivity of these molecules, in that they follow the Hammett parameter of substituent groups. These results suggest that photobases may be capable of controlling the chemical phenomena beyond proton transfer and may open opportunities for a new handle in photocatalysis.


Assuntos
Prótons , Quinolinas , Catálise , Ácidos de Lewis , Termodinâmica
3.
J Phys Chem B ; 125(10): 2741-2753, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33689335

RESUMO

Ionic liquids (ILs) have both fundamental and practical value in interfacial science and electrochemistry. However, understanding their behavior near a surface is challenging because of strong Coulomb interactions and large and irregular ionic sizes, which affect both their structure and energetics. To understand this problem, we present a combined experimental and computational study using a vibrational probe molecule, 4-mercaptobenzonitrile, inserted at the junction between a metal and a variety of ILs. The vibrational frequency of the nitrile in the probe molecule reports on the local solvation environment and the electrostatic field at this junction. Within the ethylmethyl imidazolium (EMIM+) cation family of ILs, we varied the anions over a range of sizes and types. Complementing our surface spectroscopy, we also ran molecular dynamics simulations of these interfaces to better understand the ionic structures that produced the measured fields. The magnitude of the frequency shifts, and thereby fields, shows a general correlation with the size of anions, with larger anions corresponding to smaller fields. We find that the source of this correlation is partial intercalation of smaller anions into the probe monolayer, resulting in tighter packing of ionic layers near the surface. Larger anions reduce the overall lateral ion packing density near the surface, which reduces the net charge per unit area and explains the smaller observed fields. The insight from this work is important for developing a fundamental picture of concentrated electrolytes near interfaces and can help with designing ILs to create tailored electric fields near an electrode.

4.
J Phys Chem B ; 124(34): 7500-7507, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32786711

RESUMO

Understanding ionic structure and electrostatic environments near a surface has both fundamental and practical value. In electrochemistry, especially when room temperature ionic liquids (ILs) are involved, the complex ionic structure near the interface is expected to crucially influence reactions. Here we report evidence that even in dilute aqueous solutions of several ILs, the ions aggregate near the surface in ways that are qualitatively different from simple electrolytes. We have used a vibrational probe molecule, 4-mercaptobenzonitrile (MBN), tethered to a metal surface to monitor the behavior of the ionic layers. The characteristic nitrile vibrational frequency of this molecule has distinct values in the presence of pure water (∼2232 cm-1) and pure IL (for example, ∼2226 cm-1 for ethylmethylimidazolium tetrafluoroborate, [EMIM][BF4]). This difference reflects the local electrostatic field and the hydrogen-bonding variations between these two limiting cases. We tracked this frequency shift as a function of IL concentration in water all the way from pure water to pure IL. We report two important findings. First, only one nitrile peak is observed for the entire concentration range, indicating that at least on the length scale of the probe molecule water and ILs do not phase separate within the interface, and no heterogeneously distinct electrostatic environments are formed. Second, and more importantly, we find that even up to a significant mole fraction of bulk water (x ∼ 0.95), the nitrile frequency does not change from that indicative of a pure IL for [EMIM][BF4], indicating preferential aggregation of the ions near the surface. Because this behavior is very similar to surfactants, we chose an imidazolium cation with a longer side chain which resulted in behavior expected from a surfactant, with a preferential layer of the ions on the surface even in dilute water solutions (x ∼ 0.995). This observation indicates that even those ILs that are not nominally categorized as surfactants have a strong tendency to aggregate at the surface. Because ILs serve as electrolytes in a range of electrochemical reactions, including those requiring water, our results are likely useful for mechanistic understanding and tuning of such reactions.

5.
J Am Chem Soc ; 139(10): 3896-3903, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28221030

RESUMO

Control over polymer sequence and architecture is crucial to both understanding structure-property relationships and designing functional materials. In pursuit of these goals, we developed a new synthetic approach that enables facile manipulation of the density and distribution of grafts in polymers via living ring-opening metathesis polymerization (ROMP). Discrete endo,exo-norbornenyl dialkylesters (dimethyl DME, diethyl DEE, di-n-butyl DBE) were strategically designed to copolymerize with a norbornene-functionalized polystyrene (PS), polylactide (PLA), or polydimethylsiloxane (PDMS) macromonomer mediated by the third-generation metathesis catalyst (G3). The small-molecule diesters act as diluents that increase the average distance between grafted side chains, generating polymers with variable grafting density. The grafting density (number of side chains/number of norbornene backbone repeats) could be straightforwardly controlled by the macromonomer/diluent feed ratio. To gain insight into the copolymer sequence and architecture, self-propagation and cross-propagation rate constants were determined according to a terminal copolymerization model. These kinetic analyses suggest that copolymerizing a macromonomer/diluent pair with evenly matched self-propagation rate constants favors randomly distributed side chains. As the disparity between macromonomer and diluent homopolymerization rates increases, the reactivity ratios depart from unity, leading to an increase in gradient tendency. To demonstrate the effectiveness of our method, an array of monodisperse polymers (PLAx-ran-DME1-x)n bearing variable grafting densities (x = 1.0, 0.75, 0.5, 0.25) and total backbone degrees of polymerization (n = 167, 133, 100, 67, 33) were synthesized. The approach disclosed in this work therefore constitutes a powerful strategy for the synthesis of polymers spanning the linear-to-bottlebrush regimes with controlled grafting density and side chain distribution, molecular attributes that dictate micro- and macroscopic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...