Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(10): e034364, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726919

RESUMO

BACKGROUND: Comprehensive blood lipoprotein profiles and their association with incident coronary heart disease (CHD) among racially and geographically diverse populations remain understudied. METHODS AND RESULTS: We conducted nested case-control studies of CHD among 3438 individuals (1719 pairs), including 1084 White Americans (542 pairs), 1244 Black Americans (622 pairs), and 1110 Chinese adults (555 pairs). We examined 36 plasma lipids, lipoproteins, and apolipoproteins, measured by nuclear magnetic resonance spectroscopy, with incident CHD among all participants and subgroups by demographics, lifestyle, and metabolic health status using conditional or unconditional logistic regression adjusted for potential confounders. Conventionally measured blood lipids, that is, total cholesterol, triglycerides, low-density lipoprotein-cholesterol, and high-density lipoprotein-cholesterol, were each associated with incident CHD, with odds ratios (ORs) being 1.33, 1.32, 1.24, and 0.79 per 1-SD increase among all participants. Seventeen lipoprotein biomarkers showed numerically stronger associations than conventional lipids, with ORs per 1-SD among all participants ranging from 1.35 to 1.57 and a negative OR of 0.78 (all false discovery rate <0.05), including apolipoprotein B100 to apolipoprotein A1 ratio (OR, 1.57 [95% CI, 1.45-1.7]), low-density lipoprotein-triglycerides (OR, 1.55 [95% CI, 1.43-1.69]), and apolipoprotein B (OR, 1.49 [95% CI, 1.37-1.62]). All these associations were significant and consistent across racial groups and other subgroups defined by age, sex, smoking, obesity, and metabolic health status, including individuals with normal levels of conventionally measured lipids. CONCLUSIONS: Our study highlighted several lipoprotein biomarkers, including apolipoprotein B/ apolipoprotein A1 ratio, apolipoprotein B, and low-density lipoprotein-triglycerides, strongly and consistently associated with incident CHD. Our results suggest that comprehensive lipoprotein measures may complement the standard lipid panel to inform CHD risk among diverse populations.


Assuntos
Apolipoproteínas , Biomarcadores , Negro ou Afro-Americano , Doença das Coronárias , Lipoproteínas , População Branca , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Doença das Coronárias/etnologia , Doença das Coronárias/diagnóstico , Estudos Prospectivos , Estudos de Casos e Controles , Lipoproteínas/sangue , Idoso , Apolipoproteínas/sangue , Biomarcadores/sangue , Lipídeos/sangue , Incidência , Asiático/estatística & dados numéricos , Adulto , Estados Unidos/epidemiologia , Fatores de Risco , Medição de Risco , Espectroscopia de Ressonância Magnética , Triglicerídeos/sangue
2.
Biomol NMR Assign ; 18(1): 79-84, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564159

RESUMO

The lipocalin protein family is a structurally conserved group of proteins with a variety of biological functions defined by their ability to bind small molecule ligands and interact with partner proteins. One member of this family is siderocalin, a protein found in mammals. Its role is discussed in inflammatory processes, iron trafficking, protection against bacterial infections and oxidative stress, cell migration, induction of apoptosis, and cancer. Though it seems to be involved in numerous essential pathways, the exact mechanisms are often not fully understood. The NMR backbone assignments for the human siderocalin and its rat ortholog have been published before. In this work we describe the backbone NMR assignments of siderocalin for another important model organism, the mouse - data that might become important for structure-based drug discovery. Secondary structure elements were predicted based on the assigned backbone chemical shifts using TALOS-N and CSI 3.0, revealing a high content of beta strands and one prominent alpha helical region. Our findings correlate well with the known crystal structure and the overall conserved fold of the lipocalin family.


Assuntos
Lipocalinas , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Animais , Camundongos , Sequência de Aminoácidos , Lipocalina-2/química , Lipocalinas/química
3.
Nat Commun ; 15(1): 473, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212624

RESUMO

Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.


Assuntos
Domínio Catalítico , Estrutura Secundária de Proteína
4.
J Biol Chem ; 299(7): 104893, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286037

RESUMO

The everninomicins are bacterially produced antibiotic octasaccharides characterized by the presence of two interglycosidic spirocyclic ortho-δ-lactone (orthoester) moieties. The terminating G- and H-ring sugars, L-lyxose and C-4 branched sugar ß-D-eurekanate, are proposed to be biosynthetically derived from nucleotide diphosphate pentose sugar pyranosides; however, the identity of these precursors and their biosynthetic origin remain to be determined. Herein we identify a new glucuronic acid decarboxylase from Micromonospora belonging to the superfamily of short-chain dehydrogenase/reductase enzymes, EvdS6. Biochemical characterization demonstrated that EvdS6 is an NAD+-dependent bifunctional enzyme that produces a mixture of two products, differing in the sugar C-4 oxidation state. This product distribution is atypical for glucuronic acid decarboxylating enzymes, most of which favor production of the reduced sugar and a minority of which favor release of the oxidized product. Spectroscopic and stereochemical analysis of reaction products revealed that the first product released is the oxidatively produced 4-keto-D-xylose and the second product is the reduced D-xylose. X-ray crystallographic analysis of EvdS6 at 1.51 Å resolution with bound co-factor and TDP demonstrated that the overall geometry of the EvdS6 active site is conserved with other SDR enzymes and enabled studies probing structural determinants for the reductive half of the net neutral catalytic cycle. Critical active site threonine and aspartate residues were unambiguously identified as essential in the reductive step of the reaction and resulted in enzyme variants producing almost exclusively the keto sugar. This work defines potential precursors for the G-ring L-lyxose and resolves likely origins of the H-ring ß-D-eurekanate sugar precursor.


Assuntos
Aminoglicosídeos , Proteínas de Bactérias , Carboxiliases , Micromonospora , Família Multigênica , Xilose , Aminoglicosídeos/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Micromonospora/enzimologia , Micromonospora/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Structure ; 31(6): 713-723.e3, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119820

RESUMO

In-frame deletion mutations can result in disease. The impact of these mutations on protein structure and subsequent functional changes remain understudied, partially due to the lack of comprehensive datasets including a structural readout. In addition, the recent breakthrough in structure prediction through deep learning demands an update of computational deletion mutation prediction. In this study, we deleted individually every residue of a small α-helical sterile alpha motif domain and investigated the structural and thermodynamic changes using 2D NMR spectroscopy and differential scanning fluorimetry. Then, we tested computational protocols to model and classify observed deletion mutants. We show a method using AlphaFold2 followed by RosettaRelax performs the best overall. In addition, a metric containing pLDDT values and Rosetta ΔΔG is most reliable in classifying tolerated deletion mutations. We further test this method on other datasets and show they hold for proteins known to harbor disease-causing deletion mutations.


Assuntos
Biologia Computacional , Proteínas , Proteínas/química , Mutação , Simulação por Computador , Deleção de Sequência , Espectroscopia de Ressonância Magnética
6.
J Am Chem Soc ; 144(28): 12602-12607, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786958

RESUMO

An atomic view of a main aqueous conformation of cyclosporine A (CycA), an important 11-amino-acid macrocyclic immunosuppressant, is reported. For decades, it has been a grand challenge to determine the conformation of free CycA in an aqueous-like solution given its poor water solubility. Using a combination of X-ray and single-crystal neutron diffraction, we unambiguously resolve a unique conformer (A1) with a novel cis-amide between residues 11 and 1 and two water ligands that stabilize hydrogen bond networks. NMR spectroscopy and titration experiments indicate that the novel conformer is as abundant as the closed conformer in 90/10 (v/v) methanol/water and is the main conformer at 10/90 methanol/water. Five other conformers were also detected in 90/10 methanol/water, one in slow exchange with A1, another one in slow exchange with the closed form and three minor ones, one of which contains two cis amides Abu2-Sar3 and MeBmt1-MeVal11. These conformers help better understand the wide spectrum of membrane permeability observed for CycA analogues and, to some extent, the binding of CycA to protein targets.


Assuntos
Ciclosporina , Metanol , Amidas/química , Ligação de Hidrogênio , Conformação Molecular , Conformação Proteica , Água/química
7.
J Biol Chem ; 298(4): 101792, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247387

RESUMO

This work reports substrate-selective inhibition of a protease with broad substrate specificity based on direct binding of a small-molecule inhibitor to the substrate. The target for these studies was γ-secretase protease, which cleaves dozens of different single-span membrane protein substrates, including both the C99 domain of the human amyloid precursor protein and the Notch receptor. Substrate-specific inhibition of C99 cleavage is desirable to reduce production of the amyloid-ß polypeptide without inhibiting Notch cleavage, a major source of toxicity associated with broad specificity γ-secretase inhibitors. In order to identify a C99-selective inhibitors of the human γ-secretase, we conducted an NMR-based screen of FDA-approved drugs against C99 in model membranes. From this screen, we identified the small-molecule verteporfin with these properties. We observed that verteporfin formed a direct 1:1 complex with C99, with a KD of 15-47 µM (depending on the membrane mimetic used), and that it did not bind the transmembrane domain of the Notch-1 receptor. Biochemical assays showed that direct binding of verteporfin to C99 inhibits γ-secretase cleavage of C99 with IC50 values in the range of 15-164 µM, while Notch-1 cleavage was inhibited only at higher concentrations, and likely via a mechanism that does not involve binding to Notch-1. This work documents a robust NMR-based approach to discovery of small-molecule binders to single-span membrane proteins and confirmed that it is possible to inhibit γ-secretase in a substrate-specific manner.


Assuntos
Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Verteporfina , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos , Receptores Notch/metabolismo , Verteporfina/metabolismo , Verteporfina/farmacologia
8.
J Biol Chem ; 298(1): 101493, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915025

RESUMO

Fibrin (Fbn) deposits are a hallmark of staphylocoagulase (SC)-positive endocarditis. Binding of the N terminus of Staphylococcus aureus SC to host prothrombin triggers formation of an active SC·prothrombin∗ complex that cleaves host fibrinogen to Fbn. In addition, the C-terminal domain of the prototypical SC contains one pseudorepeat (PR) and seven repeats (R1 → R7) that bind fibrinogen/Fbn fragment D (frag D) by a mechanism that is unclear. Here, we define affinities and stoichiometries of frag D binding to C-terminal SC constructs, using fluorescence equilibrium binding, NMR titration, alanine scanning, and native PAGE. We found that constructs containing the PR and single repeats bound frag D with KD ∼50 to 130 nM and a 1:1 stoichiometry, indicating a conserved binding site bridging the PR and each repeat. NMR titration of PR-R7 with frag D revealed that residues 22 to 49, bridging PR and R7, constituted the minimal peptide (MP) for binding, corroborated by alanine scanning, and binding of labeled MP to frag D. MP alignment with the PR-R and inter-repeat junctions identified critical conserved residues. Full-length PR-(R1 → R7) bound frag D with KD ∼20 nM and a stoichiometry of 1:5, whereas constructs containing the PR and various three repeats competed with PR-(R1 → R7) for frag D binding, with a 1:3 stoichiometry. These findings are consistent with binding at PR-R and R-R junctions with modest inter-repeat sequence variability. CD of PR-R7 and PR-(R1 → R7) suggested a disordered flexible structure, allowing binding of multiple fibrin(ogen) molecules. Taken together, these results provide insights into pathogen localization on host fibrin networks.


Assuntos
Coagulase , Fibrinogênio , Alanina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coagulase/química , Coagulase/metabolismo , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Ligação Proteica , Protrombina/metabolismo , Sequências Repetidas Terminais
9.
Chem Res Toxicol ; 34(3): 901-911, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33595290

RESUMO

Dietary exposure to aflatoxins is a significant risk factor in the development of hepatocellular carcinomas. Following bioactivation by microsomal P450s, the reaction of aflatoxin B1 (AFB1) with guanine (Gua) in DNA leads to the formation of stable, imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adducts. In contrast to most base modifications that result in destabilization of the DNA duplex, the AFB1-FapyGua adduct increases the thermal stability of DNA via 5'-interface intercalation and base-stacking interactions. Although it was anticipated that this stabilization might make these lesions difficult to repair relative to helix distorting modifications, prior studies have shown that both the nucleotide and base excision repair pathways participate in the removal of the AFB1-FapyGua adduct. Specifically for base excision repair, we previously showed that the DNA glycosylase NEIL1 excises AFB1-FapyGua and catalyzes strand scission in both synthetic oligodeoxynucleotides and liver DNA of exposed mice. Since it is anticipated that error-prone replication bypass of unrepaired AFB1-FapyGua adducts contributes to cellular transformation and carcinogenesis, the structural and thermodynamic parameters that modulate the efficiencies of these repair pathways are of considerable interest. We hypothesized that the DNA sequence context in which the AFB1-FapyGua adduct is formed might modulate duplex stability and consequently alter the efficiencies of NEIL1-initiated repair. To address this hypothesis, site-specific AFB1-FapyGua adducts were synthesized in three sequence contexts, with the 5' neighbor nucleotide being varied. DNA structural stability analyses were conducted using UV absorbance- and NMR-based melting experiments. These data revealed differentials in thermal stabilities associated with the 5'-neighbor base pair. Single turnover kinetic analyses using the NEIL1 glycosylase demonstrated corresponding sequence-dependent differences in the repair of this adduct, such that there was an inverse correlation between the stabilization of the duplex and the efficiency of NEIL1-mediated catalysis.


Assuntos
Aflatoxina B1/metabolismo , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , DNA/metabolismo , Guanina/metabolismo , Pirimidinas/metabolismo , Aflatoxina B1/química , Sequência de Bases , Biocatálise , DNA/química , Adutos de DNA/química , DNA Glicosilases/química , Guanina/química , Humanos , Estrutura Molecular , Pirimidinas/química
10.
Biochemistry ; 60(1): 41-52, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382597

RESUMO

Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and ß configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the ß configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.


Assuntos
Adenina/química , Aldeídos/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , DNA/química , Reparo do DNA , Humanos , Conformação de Ácido Nucleico
11.
J Am Chem Soc ; 142(29): 12715-12729, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32575981

RESUMO

How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-ß-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.


Assuntos
Colesterol/química , Proteínas de Membrana/química , Esfingolipídeos/química , Microscopia Crioeletrônica , Humanos
12.
Chem Res Toxicol ; 31(9): 924-935, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169026

RESUMO

The most common lesion in DNA occurring due to clinical treatment with Temozolomide or cellular exposures to other methylating agents is 7-methylguanine (N7-Me-dG). It can undergo a secondary reaction to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG). MeFapy-dG undergoes epimerization in DNA to produce either α or ß deoxyribose anomers. Additionally, conformational rotation around the formyl bond, C5- N5 bond, and glycosidic bond may occur. To characterize and quantitate the mixture of these isomers in DNA, a 13C-MeFapy-dG lesion, in which the CH3 group of the MeFapy-dG was isotopically labeled, was incorporated into the trimer 5'-TXT-3' and the dodecamer 5'-CATXATGACGCT-3' (X = 13C-MeFapy-dG). NMR spectroscopy of both the trimer and dodecamer revealed that the MeFapy-dG lesion exists in single strand DNA as ten configurationally and conformationally discrete species, eight of which may be unequivocally assigned. In the duplex dodecamer, the MeFapy-dG lesion exists as six configurationally and conformationally discrete species. Analyses of NMR data in the single strand trimer confirm that for each deoxyribose anomer, atropisomerism occurs around the C5- N5 bond to produce R a and S a atropisomers. Each atropisomer exhibits geometrical isomerism about the formyl bond yielding E and Z conformations. 1H NMR experiments allow the relative abundances of the species to be determined. For the single strand trimer, the α and ß anomers exist in a 3:7 ratio, favoring the ß anomer. For the ß anomer, with respect to the C5- N5 bond, the R a and S a atropisomers are equally populated. However, the Z geometrical isomer of the formyl moiety is preferred. For the α anomer, the E- S a isomer is present at 12%, whereas all other isomers are present at 5-7%. DNA processing enzymes may differentially recognize different isomers of the MeFapy-dG lesion. Moreover, DNA sequence-specific differences in the populations of configurational and conformational species may modulate biological responses to the MeFapy-dG lesion.


Assuntos
Adutos de DNA/toxicidade , DNA/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Cromatografia Líquida de Alta Pressão/métodos , DNA/química , Dano ao DNA , Reparo do DNA , Replicação do DNA , Eletroforese Capilar/métodos , Isomerismo , Conformação de Ácido Nucleico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
13.
Structure ; 26(5): 683-694.e3, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29606593

RESUMO

The function of the human cardiac sodium channel (NaV1.5) is modulated by the Ca2+ sensor calmodulin (CaM), but the underlying mechanism(s) are controversial and poorly defined. CaM has been reported to bind in a Ca2+-dependent manner to two sites in the intracellular loop that is critical for inactivation of NaV1.5 (inactivation gate [IG]). The affinity of CaM for the complete IG was significantly stronger than that of fragments that lacked both complete binding sites. Structural analysis by nuclear magnetic resonance, crystallographic, and scattering approaches revealed that CaM simultaneously engages both IG sites using an extended configuration. Patch-clamp recordings for wild-type and mutant channels with an impaired CaM-IG interaction revealed CaM binding to the IG promotes recovery from inactivation while impeding the kinetics of inactivation. Models of full-length NaV1.5 suggest that CaM binding to the IG directly modulates channel function by destabilizing the inactivated state, which would promote resetting of the IG after channels close.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sítios de Ligação , Calmodulina/química , Cristalografia por Raios X , Regulação da Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ligação Proteica
14.
Biomol NMR Assign ; 12(1): 183-187, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29450823

RESUMO

Ribonuclase P (RNase P) is an essential metallo-endonuclease that catalyzes 5' precursor-tRNA (ptRNA) processing and exists as an RNA-based enzyme in bacteria, archaea, and eukaryotes. In bacteria, a large catalytic RNA and a small protein component assemble to recognize and accurately cleave ptRNA and tRNA-like molecular scaffolds. Substrate recognition of ptRNA by bacterial RNase P requires RNA-RNA shape complementarity, intermolecular base pairing, and a dynamic protein-ptRNA binding interface. To gain insight into the binding specificity and dynamics of the bacterial protein-ptRNA interface, we report the backbone and side chain 1H, 13C, and 15N resonance assignments of the hyperthermophilic Thermatoga maritima RNase P protein in solution at 318 K. Our data confirm the formation of a stable RNA recognition motif (RRM) with intrinsic heterogeneity at both the N- and C-terminus of the protein, consistent with available structural information. Comprehensive resonance assignments of the bacterial RNase P protein serve as an important first step in understanding how coupled RNA binding and protein-RNA conformational changes give rise to ribonucleoprotein function.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Ribonuclease P/química , Thermotoga maritima/enzimologia
15.
J Biol Chem ; 292(41): 16847-16857, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28860187

RESUMO

Xeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown. X-ray crystal structures of the central globular domain of yeast XPA (Rad14) with lesion-containing DNA duplexes have provided valuable insights, but the DNA substrates used for this study do not correspond to the substrates of XPA as it functions within the NER machinery. To better understand the DNA-binding activity of human XPA in NER, we used NMR to investigate the interaction of its DBD with a range of DNA substrates. We found that XPA binds different single-stranded/double-stranded junction DNA substrates with a common surface. Comparisons of our NMR-based mapping of binding residues with the previously reported Rad14-DNA crystal structures revealed similarities and differences in substrate binding between XPA and Rad14. This includes direct evidence for DNA contacts to the residues extending C-terminally from the globular core, which are lacking in the Rad14 construct. Moreover, mutation of the XPA residue corresponding to Phe-262 in Rad14, previously reported as being critical for DNA binding, had only a moderate effect on the DNA-binding activity of XPA. The DNA-binding properties of several disease-associated mutations in the DBD were investigated. These results suggest that for XPA mutants exhibiting altered DNA-binding properties, a correlation exists between the extent of reduction in DNA-binding affinity and the severity of symptoms in XP patients.


Assuntos
Reparo do DNA , Proteína de Xeroderma Pigmentoso Grupo A/química , Substituição de Aminoácidos , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
16.
Biomol NMR Assign ; 11(2): 243-249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28819722

RESUMO

The C-terminal repeat domain of staphylocoagulase that is secreted by the S. aureus is believed to play an important role interacting with fibrinogen and promotes blood clotting. To study this interaction by NMR, full assignment of each amide residue in the HSQC spectrum was required. Despite of the short sequence of the repeat construct, the HSQC spectrum contained a substantial amount of overlapped and exchange broadened resonances, indicating little secondary or tertiary structure. This caused severe problems while using the conventional, amide based NMR method for the backbone assignment. With the growing interest in small apparently disordered proteins, these issues are being faced more frequently. An alternative strategy to improve the backbone assignment capability involved carbon direct detection methods. Circumventing the amide proton detection offers a larger signal dispersion and more uniform signal intensity. For peptides with higher concentrations and in combination with the cold carbon channels of new cryoprobes, higher fields, and sufficiently long relaxation times, the disadvantage of the lower sensitivity of the 13C nucleus can be overcome. Another advantage of this method is the assignment of the proline backbone residues. Complete assignment with the carbon-detected strategy was achieved with a set of only two 3D, one 2D, and a HNCO measurement, which was necessary to translate the information to the HSQC spectrum.


Assuntos
Amidas/química , Carbono/química , Coagulase/química , Ressonância Magnética Nuclear Biomolecular , Staphylococcus aureus/enzimologia
17.
Sci Adv ; 3(4): e1602794, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439555

RESUMO

γ-Secretase cleavage of the Notch receptor transmembrane domain is a critical signaling event for various cellular processes. Efforts to develop inhibitors of γ-secretase cleavage of the amyloid-ß precursor C99 protein as potential Alzheimer's disease therapeutics have been confounded by toxicity resulting from the inhibition of normal cleavage of Notch. We present biochemical and structural data for the combined transmembrane and juxtamembrane Notch domains (Notch-TMD) that illuminate Notch signaling and that can be compared and contrasted with the corresponding traits of C99. The Notch-TMD and C99 have very different conformations, adapt differently to changes in model membrane hydrophobic span, and exhibit different cholesterol-binding properties. These differences may be exploited in the design of agents that inhibit cleavage of C99 while allowing Notch cleavage.


Assuntos
Precursor de Proteína beta-Amiloide/química , Modelos Moleculares , Receptores Notch/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Receptores Notch/genética , Receptores Notch/metabolismo
18.
J Biol Chem ; 292(8): 3154-3163, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069813

RESUMO

The structural and biophysical properties typically associated with G-quadruplex (G4) structures render them a significant block for DNA replication, which must be overcome for cell division to occur. The Werner syndrome protein (WRN) is a RecQ family helicase that has been implicated in the efficient processing of G4 DNA structures. The aim of this study was to identify the residues of WRN involved in the binding and ATPase-driven unwinding of G4 DNA. Using a c-Myc G4 DNA model sequence and recombinant WRN, we have determined that the RecQ-C-terminal (RQC) domain of WRN imparts a 2-fold preference for binding to G4 DNA relative to non-G4 DNA substrates. NMR studies identified residues involved specifically in interactions with G4 DNA. Three of the amino acids in the WRN RQC domain that exhibited the largest G4-specific changes in NMR signal were then mutated alone or in combination. Mutating individual residues implicated in G4 binding had a modest effect on WRN binding to DNA, decreasing the preference for G4 substrates by ∼25%. Mutating two G4-interacting residues (T1024G and T1086G) abrogated preferential binding of WRN to G4 DNA. Very modest decreases in G4 DNA-stimulated ATPase activity were observed for the mutant enzymes. Most strikingly, G4 unwinding by WRN was inhibited ∼50% for all three point mutants and >90% for the WRN double mutant (T1024G/T1086G) relative to normal B-form dsDNA substrates. Our work has helped to identify residues in the WRN RQC domain that are involved specifically in the interaction with G4 DNA.


Assuntos
DNA/metabolismo , Quadruplex G , Helicase da Síndrome de Werner/metabolismo , Síndrome de Werner/enzimologia , DNA/química , DNA/genética , Reparo do DNA , Replicação do DNA , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/química , Helicase da Síndrome de Werner/genética
19.
Traffic ; 17(4): 400-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26756312

RESUMO

The adaptor protein 4 (AP4) complex (ϵ/ß4/µ4/σ4 subunits) forms a non-clathrin coat on vesicles departing the trans-Golgi network. AP4 biology remains poorly understood, in stark contrast to the wealth of molecular data available for the related clathrin adaptors AP1 and AP2. AP4 is important for human health because mutations in any AP4 subunit cause severe neurological problems, including intellectual disability and progressive spastic para- or tetraplegias. We have used a range of structural, biochemical and biophysical approaches to determine the molecular basis for how the AP4 ß4 C-terminal appendage domain interacts with tepsin, the only known AP4 accessory protein. We show that tepsin harbors a hydrophobic sequence, LFxG[M/L]x[L/V], in its unstructured C-terminus, which binds directly and specifically to the C-terminal ß4 appendage domain. Using nuclear magnetic resonance chemical shift mapping, we define the binding site on the ß4 appendage by identifying residues on the surface whose signals are perturbed upon titration with tepsin. Point mutations in either the tepsin LFxG[M/L]x[L/V] sequence or in its cognate binding site on ß4 abolish in vitro binding. In cells, the same point mutations greatly reduce the amount of tepsin that interacts with AP4. However, they do not abolish the binding between tepsin and AP4 completely, suggesting the existence of additional interaction sites between AP4 and tepsin. These data provide one of the first detailed mechanistic glimpses at AP4 coat assembly and should provide an entry point for probing the role of AP4-coated vesicles in cell biology, and especially in neuronal function.


Assuntos
Complexo 4 de Proteínas Adaptadoras/metabolismo , Complexo 4 de Proteínas Adaptadoras/química , Complexo 4 de Proteínas Adaptadoras/genética , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Mutação Puntual , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...