Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38843440

RESUMO

Pulmonary fibrosis can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analysed using transmission electron microscopy, immunohistochemistry and single-cell-RNA-sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in-vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells in fibrotic lungs as compared to donors. A more intense CD31 and vWF and patchy VE-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin and VEGFR-2 and activation marker von-Willebrand-Factor gene expression was increased in different endothelial subpopulations (e.g. arterial, venous, gCap, aCap) in pulmonary fibrosis. This was associated with a heightened sensitivity of fibrotic endothelial cells to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in endothelial cells from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, while VE-Cadherin, Thrombomodulin and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of PF patients six months after the initial diagnosis. Our data demonstrate highly abnormal endothelial cells in PF. The vascular compartment is characterized by hyper-activation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Re-establishing endothelial cell homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.

2.
J Clin Invest ; 133(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581311

RESUMO

The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Pulmão/patologia , Células Endoteliais , Doença Pulmonar Obstrutiva Crônica/patologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Fibrose Pulmonar/patologia , Endotélio Vascular
3.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L431-L437, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997290

RESUMO

For more than 2 years, COVID-19 has been holding the world at awe with new waves of infections, novel mutants, and still limited (albeit improved) means to combat SARS-CoV-2-induced respiratory failure, the most common and fatal presentation of severe COVID-19. In the present perspective, we draw from the successes and-mostly-failures in previous acute respiratory distress syndrome (ARDS) work and the experiences from COVID-19 to define conceptual barriers that have so far hindered therapeutic breakthroughs in this deadly disease, and to open up new avenues of thinking and thus, ultimately of therapy.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2
4.
Pulm Circ ; 11(4): 20458940211051188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631012
5.
Front Immunol ; 12: 684657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489935

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic, incurable condition characterized by pulmonary vascular remodeling, perivascular inflammation, and right heart failure. Regulatory T cells (Tregs) stave off autoimmunity, and there is increasing evidence for their compromised activity in the inflammatory milieu of PAH. Abnormal Treg function is strongly correlated with a predisposition to PAH in animals and patients. Athymic Treg-depleted rats treated with SU5416, an agent causing pulmonary vascular injury, develop PAH, which is prevented by infusing missing CD4+CD25highFOXP3+ Tregs. Abnormal Treg activity may also explain why PAH disproportionately affects women more than men. This mini review focuses on the role of Tregs in PAH with a special view to sexual dimorphism and the future promise of Treg therapy.


Assuntos
Hipertensão Arterial Pulmonar/imunologia , Hipertensão Arterial Pulmonar/prevenção & controle , Linfócitos T Reguladores/imunologia , Lesões do Sistema Vascular/imunologia , Lesões do Sistema Vascular/prevenção & controle , Animais , Autoimunidade , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Humanos , Indóis/efeitos adversos , Hipertensão Arterial Pulmonar/patologia , Pirróis/efeitos adversos , Ratos , Caracteres Sexuais , Lesões do Sistema Vascular/patologia
6.
Can J Cardiol ; 37(6): 913-923, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609715

RESUMO

BACKGROUND: The mechanism of vascular remodelling in pulmonary arterial hypertension (PAH) remains unclear. Hence, defining the origin of cells constituting intractable vascular lesions in PAH is expected to facilitate therapeutic progress. Herein, we aimed to evaluate the origin of intractable vascular lesions in PAH rodent models via bone marrow (BM) and orthotopic lung transplantation (LT). METHODS: To trace BM-derived cells, we prepared chimeric rats transplanted with BM cells from green fluorescent protein (GFP) transgenic rats. Male rats were transplanted with lungs obtained from female rats and vice versa. Pulmonary hypertension was induced in the transplanted rats via Sugen5416 treatment and subsequent chronic hypoxia (Su/Hx). RESULTS: In the chimeric Su/Hx models, GFP-positive cells were observed in the pulmonary vascular area. Moreover, the right ventricular systolic pressure was significantly lower compared with wild-type Su/Hx rats without BM transplantation (P = 0.009). PAH suppression was also observed in rats that received allograft transplanted BM transplantation. In male rats that received LT and Su/Hx, BM-derived cells carrying the Y chromosome were also detected in neointimal occlusive lesions of the transplanted lungs received from female rats. CONCLUSIONS: BM-derived cells participate in pulmonary vascular remodelling in the Su/Hx rat model, whereas BM transplantation may contribute to suppression of development of PAH.


Assuntos
Células da Medula Óssea , Transplante de Medula Óssea/métodos , Rastreamento de Células/métodos , Hipóxia , Pulmão , Hipertensão Arterial Pulmonar , Remodelação Vascular/fisiologia , Inibidores da Angiogênese/farmacologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Feminino , Hipóxia/complicações , Hipóxia/metabolismo , Indóis/farmacologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Neointima/etiologia , Neointima/fisiopatologia , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/patologia , Pirróis/farmacologia , Ratos , Quimeras de Transplante , Remodelação Vascular/efeitos dos fármacos
7.
Chronic Obstr Pulm Dis ; 8(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33238087

RESUMO

BACKGROUND: Up to 50% of chronic obstructive pulmonary disease (COPD) patients do not receive recommended care for COPD. To address this issue, we developed Proactive Integrated Care (Proactive iCare), a health care delivery model that couples integrated care with remote monitoring. METHODS: We conducted a prospective, quasi-randomized clinical trial in 511 patients with advanced COPD or a recent COPD exacerbation, to test whether Proactive iCare impacts patient-centered outcomes and health care utilization. Patients were allocated to Proactive iCare (n=352) or Usual Care ( =159) and were examined for changes in quality of life using the St George's Respiratory Questionnaire (SGRQ), symptoms, guideline-based care, and health care utilization. FINDINGS: Proactive iCare improved total SGRQ by 7-9 units (p < 0.0001), symptom SGRQ by 9 units (p<0.0001), activity SGRQ by 6-7 units (p<0.001) and impact SGRQ by 7-11 units (p<0.0001) at 3, 6 and 9 months compared with Usual Care. Proactive iCare increased the 6-minute walk distance by 40 m (p<0.001), reduced annual COPD-related urgent office visits by 76 visits per 100 participants (p<0.0001), identified unreported exacerbations, and decreased smoking (p=0.01). Proactive iCare also improved symptoms, the body mass index-airway obstruction-dyspnea-exercise tolerance (BODE) index and oxygen titration (p<0.05). Mortality in the Proactive iCare group (1.1%) was not significantly different than mortality in the Usual Care group (3.8%; p=0.08). INTERPRETATION: Linking integrated care with remote monitoring improves the lives of people with advanced COPD, findings that may have been made more relevant by the coronavirus 2019 (COVID-19) pandemic.

9.
Eur Respir J ; 56(1)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32241831

RESUMO

BACKGROUND: In animal models of pulmonary arterial hypertension (PAH), angiotensin-converting enzyme (ACE)2 and angiotensin (Ang)-(1-7) have been shown to have vasodilatory, antiproliferative, antifibrotic and antihypertrophic properties. However, the status and role of the ACE2-Ang(1-7) axis in human PAH is incompletely understood. METHODS: We studied 85 patients with a diagnosis of PAH of distinct aetiologies. 55 healthy blood donors paired for age and sex served as controls. Blood samples were obtained from the pulmonary artery in patients with PAH during right heart catheterisation. Peripheral blood was obtained for both groups. Ang(1-7) and -II were measured using zone capillary electrophoresis. Aldosterone, Ang(1-9), AngA and ACE2 were measured using ELISA, and ACE2 activity was determined enzymatically. RESULTS: Of the 85 patients, 47 had idiopathic PAH, 25 had PAH associated with congenital heart disease and 13 had PAH associated with collagen vascular disease. Compared to controls, patients with PAH had a higher concentration of AngII (median 1.03, interquartile range 0.72-1.88 pmol·mL-1 versus 0.19, 0.10-0.37 pmol·mL-1; p<0.001) and of aldosterone (88.7, 58.7-132 ng·dL-1 versus 12.9, 9.55-19.9 ng·dL-1; p<0.001). Conversely, PAH patients had a lower concentration of Ang(1-7) than controls (0.69, 0.474-0.91 pmol·mL-1 versus 4.07, 2.82-6.73 pmol·mL-1; p<0.001), and a lower concentration of Ang(1-9) and AngA. Similarly, the ACE2 concentration was higher than in controls (8.7, 5.35-13.2 ng·mL-1 versus 4.53, 1.47-14.3 ng·mL-1; p=0.011), whereas the ACE2 activity was significantly reduced (1.88, 1.08-2.81 nmol·mL-1 versus 5.97, 3.1-17.8 nmol·mL-1; p<0.001). No significant differences were found among the three different aetiological forms of PAH. CONCLUSIONS: The AngII-ACE2-Ang(1-7) axis appears to be altered in human PAH and we propose that this imbalance, in favour of AngII, plays a role in the pathogenesis of the severe PAH. Further mechanistic studies are warranted.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão Arterial Pulmonar , Angiotensina I , Animais , Humanos , Fragmentos de Peptídeos , Peptidil Dipeptidase A
10.
Pulm Circ ; 10(1): 2045894019882635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257113

RESUMO

It has been generally accepted that severe forms of pulmonary arterial hypertension are associated with inflammation. Plasma levels in patients with severe pulmonary arterial hypertension show elevated levels of interleukins and mediators of inflammation and histologically the diseased small pulmonary arterioles show infiltrates of inflammatory and immune cells. Here, we review the literature that connects pulmonary hypertension with the arachidonic acid/5-lipoxygenase-derived leukotriens. This mostly preclinical background data together with the availability of 5-lipoxygenase inhibitors and leukotriene receptor blockers provide the rationale for testing the hypothesis that 5-lipoxygenase products contribute to the pathobiology of severe pulmonary arterial hypertension in a subgroup of patients.

11.
Pulm Circ ; 10(1): 2045894019898376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110385

RESUMO

Pulmonary arterial hypertension is a fatal disease associated with pulmonary vascular remodeling and right ventricular hypertrophy. Pre-clinical animal models that reproduce the human pulmonary arterial hypertension process and pharmacological response to available therapies are critical for future drug development. The most prevalent animal model reproducing many aspects of angioobliterative forms of pulmonary arterial hypertension is the rat Sugen/hypoxia model in which Sugen, a vascular endothelial growth factor receptor antagonist, primarily causes initiation of endothelial injury and later in the presence of hypoxia promotes proliferation of apoptosis-resistant endothelial cells. We previously demonstrated that exposure of human pulmonary microvascular endothelium to morphine and HIV-proteins results in initial apoptosis followed by increased proliferation. Here, we demonstrate that the double-hit of morphine and Sugen 5416 (Sugen-morphine) in rats leads to the development of pulmonary arterial hypertension with significant medial hypertrophy of pre-acinar pulmonary arteries along with neo-intimal thickening of intra-acinar vessels. In addition, the pulmonary smooth muscle and endothelial cells isolated from Sugen-morphine rats showed hyperproliferation and apoptotic resistance, respectively, in response to serum starvation. Our findings support that the dual hit model of Sugen 5416 and morphine provides another experimental strategy to induce significant pulmonary vascular remodeling and development of severe pulmonary arterial hypertension pathology in rats without exposure to hypoxia.

12.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1115-L1130, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32023082

RESUMO

Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.


Assuntos
Neoplasias Pulmonares/patologia , Modelos Biológicos , Hipertensão Arterial Pulmonar/patologia , Animais , Apoptose , Autoimunidade , Humanos , Proteínas de Neoplasias/metabolismo
13.
Pulm Circ ; 9(4): 2045894019889775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798835

RESUMO

In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hypertension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.

14.
Circulation ; 140(17): 1409-1425, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31462075

RESUMO

BACKGROUND: Bmpr2 (bone morphogenetic protein receptor 2) mutations are critical risk factors for hereditary pulmonary arterial hypertension (PAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-LO (5-lipoxygenase) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4, are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. METHODS: Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to 1 year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus, monocrotaline, SU5416, SU5416 with chronic hypoxia, or chronic hypoxia alone. Bmpr2-mutant hereditary PAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells with impaired BMPR2 signaling were exposed to increased 5-LO-mediated inflammation and were assessed for phenotypic and transcriptomic changes. RESULTS: Lung inflammation, induced by intratracheal delivery of 5-LO-expressing adenovirus, elicited severe PAH with intimal remodeling in Bmpr2+/- rats but not in their wild-type littermates. Neointimal lesions in the diseased Bmpr2+/- rats gained endogenous 5-LO expression associated with elevated leukotriene B4 biosynthesis. Bmpr2-mutant hereditary PAH patients similarly expressed 5-LO in the neointimal cells. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative pulmonary artery endothelial cells with mesenchymal characteristics. These transformed cells expressed nuclear envelope-localized 5-LO consistent with induced leukotriene B4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated nuclear factor Kappa B subunit (NF-κB), interleukin-6, and transforming growth factor beta (TGF-ß) signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF-ß antagonism suggests that TGF-ß is critical for neointimal transformation. CONCLUSIONS: In a new 2-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF-ß signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced leukotriene B4 production. This study offers an explanation of how an environmental injury unleashes the destructive potential of an otherwise silent genetic mutation.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Inflamação/metabolismo , Neointima/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Animais , Células Endoteliais/metabolismo , Hipertensão Pulmonar/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Transgênicos , Transdução de Sinais/fisiologia
15.
Circ Res ; 125(3): 356-366, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31242807

RESUMO

RATIONALE: CYPs (cytochrome p450) are critically involved in the metabolism of xenobiotics and toxins. Given that pulmonary hypertension is strongly associated with environmental exposure, we hypothesize that CYPs play a role in the development and maintenance of pathological vascular remodeling. OBJECTIVE: We sought to identify key CYPs that could link drug or hormone metabolism to the development of pulmonary hypertension. METHODS AND RESULTS: We searched in Medline (PubMed) database, as well as http://www.clinicaltrials.gov, for CYPs associated with many key aspects of pulmonary arterial hypertension including, but not limited to, severe pulmonary hypertension, estrogen metabolism, inflammation mechanisms, quasi-malignant cell growth, drug susceptibility, and metabolism of the pulmonary arterial hypertension-specific drugs. CONCLUSIONS: We postulate a hypothesis where the AhR (aryl hydrocarbon receptor) mediates aberrant cell growth via expression of different CYPs associated with estrogen metabolism and inflammation.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Hipertensão Pulmonar/metabolismo , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Poluentes Ambientais/toxicidade , Ativação Enzimática , Estrogênios/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipóxia/complicações , Inflamação , Masculino , Camundongos , Polimorfismo Genético , Fatores Sexuais , Vasoconstrição
16.
Transl Pediatr ; 8(2): 133-139, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31161080

RESUMO

Heart failure (HF) is usually defined by the dominantly affected heart chamber; therefore, termed right or left HF (RHF or LHF). Pulmonologists understand RHF as a complex syndrome characterized by insufficient delivery of blood from the right ventricle associated with elevated systemic venous pressure at rest or exercise. Cardiologists specify LHF by its clinical functional class and the relation to a reduced (HFrEF), preserved (HFpEF) or mid-range ejection fraction (HFmrEF). Pediatric cardiologist, dealing also with patients with a failing single ventricle, define HF as a condition of insufficient systemic oxygen delivery (DO2). Certainly, pediatricians do not think of the right and left heart, or even a single ventricle as an isolated, independently acting entity. Because of the importance of cardiac interactions, the creation of a restrictive atrial communication aims at a palliative approach with the goal to diminish the congestive consequences of a dysfunctional ventricle; further to serve as a pop-off valve in order to prevent syncope and cardiovascular collapse. This review covers the background, the particular indications, the techniques and preliminary results achieved following the creation of a restrictive atrial septum defect (rASD) in different pathophysiological settings. Based on the institutional experience, percutaneous trans-catheter perforation of the atrial septum, followed by gradual balloon dilatation can be performed at any age and location worldwide. Medical institutions in low resource countries can make use of such palliating procedures in the setting of right as well as LHF independent of their pharmacological facilities.

18.
BMC Pulm Med ; 18(1): 197, 2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594174

RESUMO

BACKGROUND: Impaired angiogenesis is assumed to be an important factor in the development of chronic thromboembolic pulmonary hypertension (CTEPH). However, the role of endothelial cells (ECs) in CTEPH remains unclear. The aim of this study was to investigate the angiogenic potential of ECs from pulmonary endarterectomy (PEA) specimens. METHODS: We isolated ECs from PEA specimens (CTEPH-ECs) and control EC lines from the intact pulmonary arteries of patients with peripheral lung cancers, using a MACS system. These cells were analyzed in vitro including PCR-array analysis, and the PEA specimens were analyzed with immunohistochemistry. Additionally, the serum HGF levels were determined in CTEPH patients. RESULTS: A three-dimensional culture assay revealed that CTEPH-ECs were highly angiogenic. An angiogenesis-focused gene PCR array revealed a high expression of hepatocyte growth factor (HGF) in CTEPH-ECs. The high expression of HGF was also confirmed in the supernatant extracted from PEA specimens. The immunohistochemical analysis showed expression of HGF on the surface of the thrombus vessels. The serum HGF levels in CTEPH patients were higher than those in pulmonary thromboembolism survivors. CONCLUSION: Our study suggests that there are ECs with pro-angiogenetic character and high expression of HGF in PEA specimens. It remains unknown how these results are attributable to the etiology. However, further investigation focused on the HGF pathway may provide novel diagnostic and therapeutic tools for patients with CTEPH.


Assuntos
Células Endoteliais/fisiologia , Fator de Crescimento de Hepatócito/metabolismo , Hipertensão Pulmonar/fisiopatologia , Neoplasias Pulmonares/patologia , Neovascularização Patológica , Artéria Pulmonar/fisiopatologia , Embolia Pulmonar/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Células Cultivadas , Doença Crônica , Endarterectomia , Células Endoteliais/metabolismo , Feminino , Expressão Gênica , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Fator de Crescimento de Hepatócito/sangue , Fator de Crescimento de Hepatócito/genética , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/cirurgia , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/cirurgia , Embolia Pulmonar/sangue , Embolia Pulmonar/complicações , Pirrolidinonas/farmacologia , Quinolinas/farmacologia
19.
AIDS ; 32(18): 2651-2667, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30234598

RESUMO

: Improved survival among HIV-1-infected individuals with the advent of antiretroviral therapy has clearly led to a greater prevalence of noninfectious complications. One of the most devastating sequelae in these individuals is the development of pulmonary arterial hypertension (PAH). Various epidemiological studies suggest worse survival of HIV-PAH patients when compared with other forms of PAH. Given that only a subset and not all HIV-infected individuals develop HIV-PAH, it is suggested that an additional second-hit of genetic or environmental trigger is needed for the development of PAH. In this context, it has been well documented that HIV patients who abuse illicit drugs such as stimulants, opioids, and the like, are more susceptible to develop PAH. In this review, we highlight the studies that support the significance of a double hit of HIV and drug abuse in the incidence of PAH and focus on the research that has been undertaken to unravel the pathobiology and vascular remodeling mechanisms underlying the deleterious synergy between HIV infection and drugs of abuse in orchestrating the development of PAH.


Assuntos
Infecções por HIV/complicações , Hipertensão Pulmonar/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Humanos , Hipertensão Pulmonar/patologia
20.
Am J Respir Crit Care Med ; 198(4): e15-e43, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30109950

RESUMO

BACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.


Assuntos
Pesquisa , Disfunção Ventricular Direita/diagnóstico , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologia , Animais , Humanos , Sociedades Médicas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...