Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849516

RESUMO

Anorexia nervosa (AN) is a complex metabolic and psychological disorder that is influenced by both heritable genetic components and environmental factors. Exposure to various environmental influences can lead to epigenetically induced changes in gene expression. Epigenetic research in AN is still in its infancy, and studies to date are limited in determining clear, valid links to disease onset and progression are limited. Therefore, the aim of this systematic review was to compile and critically evaluate the available results of epigenetic studies specifically in AN and to provide recommendations for future studies. In accordance with the PRISMA guidelines, a systematic literature search was performed in three different databases (PubMed, Embase, and Web of Science) through May 2023. Twenty-three original papers or conference abstracts on epigenetic studies in AN were collected. Epigenome-wide association studies (EWASs), which analyze DNA methylation across the genome in patients with AN and identify potential disease-relevant changes in promoter/regulatory regions of genes, are the most promising for future research. To date, five EWASs on AN have been published, suggesting a potential reversibility of malnutrition-induced epigenetic changes once patients recover. Hence, determining differential DNA methylation levels could serve as a biomarker for disease status or early diagnosis and might be involved in disease progression or chronification. For future research, EWASs with a larger sample size, longitudinal study design and uniform methods should be performed to contribute to the understanding of the pathophysiology of AN, the development of individual interventions and a better prognosis for affected patients.

2.
Nutrients ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38892530

RESUMO

Anorexia nervosa (AN) is a severe eating disorder that predominantly affects females and typically manifests during adolescence. There is increasing evidence that serum cytokine levels are altered in individuals with AN. Previous research has largely focused on adult patients, assuming a low-grade pro-inflammatory state. The serum levels of the cytokine tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6 and IL-15, which are pro-inflammatory, were examined in 63 female adolescents with AN and 41 age-matched healthy controls (HC). We included three time points (admission, discharge, and 1-year follow-up) and investigated the clinical data to assess whether the gut microbiota was associated with cytokine alterations. Relative to the HC group, serum levels of IL-1ß and IL-6 were significantly lower during the acute phase (admission) of AN. IL-1ß expression was normalised to control levels after weight recovery. TNF-α levels were not significantly different between the AN and HC groups. IL-15 levels were significantly elevated in patients with AN at all time points. We found associations between cytokines and bodyweight, illness duration, depressive symptoms, and the microbiome. In contrast to most findings for adults, we observed lower levels of the pro-inflammatory cytokines IL-1ß and IL-6 in adolescent patients, whereas the level of IL-15 was consistently increased. Thus, the presence of inflammatory dysregulation suggests a varied rather than uniform pro-inflammatory state.


Assuntos
Anorexia Nervosa , Citocinas , Microbioma Gastrointestinal , Humanos , Anorexia Nervosa/sangue , Anorexia Nervosa/microbiologia , Feminino , Adolescente , Citocinas/sangue , Seguimentos , Alta do Paciente , Estudos de Casos e Controles , Interleucina-1beta/sangue , Fator de Necrose Tumoral alfa/sangue , Admissão do Paciente , Interleucina-6/sangue
3.
J Mol Neurosci ; 74(2): 53, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750341

RESUMO

Previous studies have demonstrated a brain volume decrease linked to long-term starvation in patients with anorexia nervosa (AN). Food intake is critically diminished in this disorder, leading to one of the highest mortality rates within the psychiatric disease spectrum. As reported in animal models, astrocytes seem to be the most affected cell type in AN. In a recently established primary cell culture model, an elevated unfolded protein response (UPR) was observed in long-term glucose semi-starved astrocytes. A well-functioning protein machinery is essential for every cell, and prolonged UPR will lead to cell death. As a nucleic acid stress-sensing pathway with the activator located in the endoplasmic reticulum, the regulation of the cGAS-STING pathway (cyclic GMP-AMP synthase/stimulator of interferon genes) was additionally investigated in the starvation context. In the current study, a glucose semi-starvation protocol of 15 days, during which cells were supplied with 2 mM glucose in the medium, was prolonged with an additional 6-day long recovery period. Our findings showed that increased UPR mRNA expression was reversible after re-establishing the standard glucose concentration of 25 mM. Furthermore, we were able to verify the presence of cGAS and STING in astrocytes with a characteristic presence of cGAS in the astrocyte nucleus during starvation. A correlation between STING and the glial fibrillary acidic protein (GFAP) could be established, hinting at a conditional presence of STING with a specific astrocyte phenotype.


Assuntos
Astrócitos , Estresse do Retículo Endoplasmático , Glucose , Proteínas de Membrana , Nucleotidiltransferases , Resposta a Proteínas não Dobradas , Astrócitos/metabolismo , Glucose/metabolismo , Animais , Células Cultivadas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética
4.
Int J Eat Disord ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545802

RESUMO

Anorexia nervosa (AN) has a multifaceted and complex pathology, yet major gaps remain in our understanding of factors involved in AN pathology. MicroRNAs (miRNAs) play a regulatory role in translating genes into proteins and help understand and treat diseases. An extensive literature review on miRNAs with AN and comorbidities has uncovered a significant lack in miRNA research. To demonstrate the importance of understanding miRNA deregulation, we surveyed the literature on depression and obesity providing examples of relevant miRNAs. For AN, no miRNA sequencing or array studies have been found, unlike other psychiatric disorders. For depression and obesity, screenings and mechanistic studies were conducted, leading to clinical studies to improve understanding of their regulatory influences. MiRNAs are promising targets for studying AN due to their role as signaling molecules, involvement in psychiatric-metabolic axes, and potential as biomarkers. These characteristics offer valuable insights into the disease's etiology and potential new treatment options. The first miRNA-based treatment for rare metabolic disorders has been approved by the FDA and it is expected that these advancements will increase in the next decade. MiRNA research in AN is essential to examine its role in the development, manifestation, and progression of the disease. PUBLIC SIGNIFICANCE: The current understanding of the development and treatment of AN is insufficient. miRNAs are short regulatory sequences that influence the translation of genes into proteins. They are the subject of research in various diseases, including both metabolic and psychiatric disorders. Studying miRNAs in AN may elucidate their causal and regulatory role, uncover potential biomarkers, and allow for future targeted treatments.

5.
Microorganisms ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374913

RESUMO

Anorexia nervosa (AN) is a severe and often chronic eating disorder that leads to alterations in the gut microbiome, which is known to influence several processes, such as appetite and body weight regulation, metabolism, gut permeability, inflammation, and gut-brain interactions. Using a translational activity-based anorexia (ABA) rat model, this study examined the effect of chronic food starvation, as well as multistrain probiotic supplementation and refeeding, on the structure of the gut and gut-associated lymphatic tissue (GALT). Our results indicated that ABA had an atrophic influence on intestinal morphology and increased the formation of GALT in the small bowel and colon. Higher formation of GALT in ABA rats appeared to be reversible upon application of a multistrain probiotic mixture and refeeding of the starved animals. This is the first time that increased GALT was found following starvation in the ABA model. Our results underscore a potential role of gut inflammatory alterations in the underlying pathophysiology of AN. Increased GALT could be linked to the gut microbiome, as probiotics were able to reverse this finding. These results emphasize the role of the microbiome-gut-brain axis in the pathomechanisms of AN and point to probiotics as potentially beneficial addendum in the treatment of AN.

6.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240031

RESUMO

Spinal cord injury (SCI) results in the production of proinflammatory cytokines due to inflammasome activation. Lipocalin 2 (LCN2) is a small secretory glycoprotein upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 secretion is induced by infection, injury, and metabolic disorders. In contrast, LCN2 has been implicated as an anti-inflammatory regulator. However, the role of LCN2 in inflammasome activation during SCI remains unknown. This study examined the role of Lcn2 deficiency in the NLRP3 inflammasome-dependent neuroinflammation in SCI. Lcn2-/- and wild-type (WT) mice were subjected to SCI, and locomotor function, formation of the inflammasome complex, and neuroinflammation were assessed. Our findings demonstrated that significant activation of the HMGB1/PYCARD/caspase-1 inflammatory axis was accompanied by the overexpression of LCN2 7 days after SCI in WT mice. This signal transduction results in the cleaving of the pyroptosis-inducing protein gasdermin D (GSDMD) and the maturation of the proinflammatory cytokine IL-1ß. Furthermore, Lcn2-/- mice showed considerable downregulation in the HMGB1/NLRP3/PYCARD/caspase-1 axis, IL-1ß production, pore formation, and improved locomotor function compared with WT. Our data suggest that LCN2 may play a role as a putative molecule for the induction of inflammasome-related neuroinflammation in SCI.


Assuntos
Proteína HMGB1 , Traumatismos da Medula Espinal , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipocalina-2/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal/metabolismo , Citocinas/metabolismo , Caspases/metabolismo , Piroptose/fisiologia
7.
J Neuroinflammation ; 19(1): 134, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668451

RESUMO

BACKGROUND: Spinal cord injury (SCI) induces a multitude of deleterious processes, including neuroinflammation and oxidative stress (OS) which contributed to neuronal damage and demyelination. Recent studies have suggested that increased formation of reactive oxygen species (ROS) and the consequent OS are critical events associated with SCI. However, there is still little information regarding the impact of these events on SCI. Astrocytes are key regulators of oxidative homeostasis in the CNS and astrocytic antioxidant responses promote the clearance of oxidants produced by neurons. Therefore, dysregulation of astrocyte physiology might largely contribute to oxidative damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the main transcriptional regulator of cellular anti-oxidative stress responses. METHODS: In the current study, we hypothesized that astrocytic activation of Nrf2 protects the spinal cord post injury via suppression of neuroinflammation. Thus, using mice line with a GFAP-specific kelch-like ECH-associated protein 1 (Keap1)-deletion, we induced a hyperactivation of Nrf2 in astrocytes and further its effects on SCI outcomes. SCI-induction was performed in mice using the Infinite Horizon Spinal Cord Impactor with a force of 60 kdyn. To assess the quantitative pattern of Nrf2/ARE-activation, we included transgenic ARE-Luc mice. Data were analyzed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA). Brown-Forsythe test was performed to test for equal variances and normal distribution was tested with Shapiro-Wilk. RESULTS: In ARE-Luc mice, a significant induction of luciferase-activity was observed as early as 1 day post-injury, indicating a functional role of Nrf2-activity at the epicenter of SCI. Furthermore, SCI induced loss of neurons and oligodendrocytes, demyelination and inflammation in wild type mice. The loss of myelin and oligodendrocytes was clearly reduced in Keap1 KO mice. In addition, Keap-1 KO mice showed a significantly better locomotor function and lower neuroinflammation responses compared to wild type mice. CONCLUSIONS: In summary, our in vivo bioluminescence data showed Nrf2-ARE activation during primary phase of SCI. Furthermore, we found that cell specific hyperactivation of Nrf2 was sufficient to protect the spinal cord against injury which indicate a promising therapeutic approach for SCI-treatment.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
8.
Clin Transl Sci ; 15(4): 889-898, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34793620

RESUMO

Anorexia nervosa (AN) is a severe psychiatric disorder characterized by energy restriction, low body weight, a fear of gaining weight, and often excessive physical activity. Anxiety disorders appear to constitute a major risk factor for developing AN and are the most frequent comorbidity. Here, the influence of anxiety-like behavior prior to food restriction on increased physical activity, leading to greater susceptibility to weight loss, was tested in rats. Furthermore, the possible anxiolytic effect of starvation itself was analyzed. A chronic starvation model activity-based anorexia (ABA) was applied to mimic physiological and behavioral characteristics of AN. During the induction of starvation and acute starvation, food intake was reduced by 70% and the rats lost 25% of their body weight, which was kept stable to imitate chronic starvation. Anxiety-like behavior was quantified before and after chronic starvation using the elevated plus maze, based on rodents' aversion to open spaces. Anxiety-related behavior before food restriction was associated with increased running-wheel activity during habituation and during the induction of starvation, and predicted faster weight loss in ABA rats. Additionally, food-restricted animals showed less anxiety-like behavior after chronic starvation. Animals showing more anxiety-like behavior appear to be more susceptible to weight loss, partially mediated by increased physical activity. Anxiety-related behavior was associated with increased physical activity, which in turn was associated with more rapid weight loss. Our data let us assume that food restriction has an anxiolytic effect. These findings demonstrate the importance of considering anxiety disorders in patients with AN.


Assuntos
Anorexia , Ansiolíticos , Animais , Anorexia/etiologia , Ansiedade/etiologia , Peso Corporal , Modelos Animais de Doenças , Medo , Humanos , Transtornos Fóbicos , Ratos , Redução de Peso/fisiologia
9.
Mol Neurobiol ; 58(11): 5907-5919, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417948

RESUMO

Lipocalin 2 (LCN2), an immunomodulator, regulates various cellular processes such as iron transport and defense against bacterial infection. Under pathological conditions, LCN2 promotes neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes. Although it seems to have a negative influence on the functional outcome in spinal cord injury (SCI), the extent of its involvement in SCI and the underlying mechanisms are not yet fully known. In this study, using a SCI contusion mouse model, we first investigated the expression pattern of Lcn2 in different parts of the CNS (spinal cord and brain) and in the liver and its concentration in blood serum. Interestingly, we could note a significant increase in LCN2 throughout the whole spinal cord, in the brain, liver, and blood serum. This demonstrates the diversity of its possible sites of action in SCI. Furthermore, genetic deficiency of Lcn2 (Lcn2-/-) significantly reduced certain aspects of gliosis in the SCI-mice. Taken together, our studies provide first valuable hints, suggesting that LCN2 is involved in the local and systemic effects post SCI, and might modulate the impairment of different peripheral organs after injury.


Assuntos
Lipocalina-2/fisiologia , Doenças Neuroinflamatórias/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Gliose/metabolismo , Lipocalina-2/sangue , Lipocalina-2/deficiência , Lipocalina-2/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Paraplegia/etiologia , Paraplegia/fisiopatologia , RNA Mensageiro/biossíntese
10.
Cells ; 10(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209408

RESUMO

Intra-neuronal misfolding of monomeric tau protein to toxic ß-sheet rich neurofibrillary tangles is a hallmark of Alzheimer's disease (AD). Tau pathology correlates not only with progressive dementia but also with microglia-mediated inflammation in AD. Amyloid-beta (Aß), another pathogenic peptide involved in AD, has been shown to activate NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3), triggering the secretion of proinflammatory interleukin-1ß (IL1ß) and interleukin-18 (IL18). However, the effect of tau protein on microglia concerning inflammasome activation, microglial polarization, and autophagy is poorly understood. In this study, human microglial cells (HMC3) were stimulated with the unaggregated and aggregated forms of the tau-derived PHF6 peptide (VQIVYK). Modulation of NLRP3 inflammasome was examined by qRT-PCR, immunocytochemistry, and Western blot. We demonstrate that fibrillar aggregates of VQIVYK upregulated the NLRP3 expression at both mRNA and protein levels in a dose- and time-dependent manner, leading to increased expression of IL1ß and IL18 in HMC3 cells. Aggregated PHF6-peptide also activated other related inflammation and microglial polarization markers. Furthermore, we also report a time-dependent effect of the aggregated PHF6 on BECN1 (Beclin-1) expression and autophagy. Overall, the PHF6 model system-based study may help to better understand the complex interconnections between Alzheimer's PHF6 peptide aggregation and microglial inflammation, polarization, and autophagy.


Assuntos
Autofagia , Inflamassomos/metabolismo , Microglia/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oligopeptídeos/farmacologia , Agregados Proteicos , Proteínas tau/farmacologia , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Biomarcadores/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Sequestossoma-1/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
11.
J Psychiatr Res ; 133: 156-165, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33341454

RESUMO

Anorexia nervosa (AN) is an eating disorder that leads to brain volume reduction and is difficult to treat since the underlying pathophysiology is poorly understood. The human gut microbiota is known to be involved in host metabolism, appetite- and bodyweight regulation, gut permeability, inflammation and gut-brain interactions. In this study, we used a translational activity-based anorexia (ABA) rat model including groups with food restriction, running-wheel access and a combination to disentangle the influences on the gut microbiota and associated changes in brain volume parameters. Our data demonstrated that chronic food restriction but not running-wheel activity had a major influence on the gut microbiota diversity and composition and reduced brain volume. Negative correlations were found between global brain weight and α-diversity, and astrocyte markers and relative abundances of the genera Odoribacter and Bifidobacterium. In contrast, the presence of lactobacilli was positively associated with white and grey brain matter volume. ABA and food-restricted rats are an interesting pre-clinical model to assess the causal influence of starvation on the gut microbiome and gut-brain interactions and can help to dissect the underlying pathophysiologic mechanisms relevant to AN.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Animais , Anorexia , Encéfalo , Modelos Animais de Doenças , Ratos
12.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008586

RESUMO

Ischemic stroke is characterized by an occlusion of a cerebral blood vessel resulting in neuronal cell death due to nutritional and oxygen deficiency. Additionally, post-ischemic cell death is augmented after reperfusion. These events are paralleled by dysregulated miRNA expression profiles in the peri-infarct area. Understanding the underlying molecular mechanism in the peri-infarct region is crucial for developing promising therapeutics. Utilizing a tMCAo (transient Middle Cerebral Artery occlusion) model in rats, we studied the expression levels of the miRNAs (miR) 223-3p, 155-5p, 3473, and 448-5p in the cortex, amygdala, thalamus, and hippocampus of both the ipsi- and contralateral hemispheres. Additionally, the levels in the blood serum, spleen, and liver and the expression of their target genes, namely, Nlrp3, Socs1, Socs3, and Vegfa, were assessed. We observed an increase in all miRNAs on the ipsilateral side of the cerebral cortex in a time-dependent manner and increased miRNAs levels (miR-223-3p, miR-3473, and miR-448-5p) in the contralateral hemisphere after 72 h. Besides the cerebral cortex, the amygdala presented increased expression levels, whereas the thalamus and hippocampus showed no alterations. Different levels of the investigated miRNAs were detected in blood serum, liver, and spleen. The gene targets were altered not only in the peri-infarct area of the cortex but selectively increased in the investigated non-affected brain regions along with the spleen and liver during the reperfusion time up to 72 h. Our results suggest a supra-regional influence of miRNAs following ischemic stroke, which should be studied to further identify whether miRNAs are transported or locally upregulated.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Ataque Isquêmico Transitório/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Soro/metabolismo , Baço/metabolismo , Animais , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo
13.
Mol Neurobiol ; 58(4): 1535-1549, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33210205

RESUMO

MicroRNAs (miRNA) are small noncoding sequences that control apoptosis, proliferation, and neuroinflammatory pathways in microglia cells. The expression of distinct miRNAs is altered after ischemia in the brain. Only minor information is available about the biogenesis and maturation of miRNAs after ischemia. We aimed at examining the impact of oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2)-induced stress on the expression of miRNA regulating proteins such as DROSHA, DGCR8, XPO5, DICER, TARBP2, and AGO2 in the cultured human microglial cell line HMC-3 (human microglial cell line clone 3). OGD duration of 2.5 h or H2O2 stimulation at a concentration of 100 µM for 24 h resulted in a marked increase of the hypoxia sensor hypoxia-inducible factor1-α in HMC-3 cells. These treatments also led to an upregulation of DROSHA, DICER1, and AGO2 detected by semiquantitative real-time PCR (qrtPCR). XPO5 and TARBP2 were only upregulated after stimulation with H2O2, while DGCR8 responded only to OGD. We found elevated DICER1, DROSHA, and AGO2 protein levels by western blot and immunohistochemistry staining. Interestingly, the latter also exposed a colocalization of AGO2 with stress granules (G3BP1) after OGD. Our data indicate that DICER, DROSHA, and AGO2 are induced in microglial cells under hypoxia-like conditions. It might be speculated that their inductions might increase the miRNA synthesis rate. Future studies should investigate this correlation to determine which miRNAs are preferably expressed by microglia cells after ischemia and which functions they could exert.


Assuntos
Isquemia Encefálica/genética , Isquemia Encefálica/patologia , MicroRNAs/biossíntese , Microglia/metabolismo , Proteínas Argonautas/metabolismo , Linhagem Celular , DNA Helicases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Humanos , Peróxido de Hidrogênio/toxicidade , MicroRNAs/genética , Microglia/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonuclease III/metabolismo , Estresse Fisiológico/efeitos dos fármacos
14.
Mol Neurobiol ; 57(6): 2588-2599, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239449

RESUMO

Post-hypoxic/ischemic neuroinflammation is selectively driven by sterile inflammation, which implies the interplay of brain-intrinsic immune cells with other neural cells and immigrated peripheral immune cells. The resultant inflammatory cascade evolves extra- and intracellular pathogen and danger-associated receptors. The latter interacts with multiprotein complexes termed inflammasomes. The NLRP3 inflammasome is one of the best-described inflammasomes. However, its impact on post-ischemic neuroinflammation and its role in neuroprotection after ischemic stroke are still under debate. Microglial cells are known to be the main source of neuroinflammation; hence, we depleted NLRP3 in BV-2 microglial cells using shRNA to investigate its role in IL-1ß maturation and phagocytosis after hypoxia (oxygen-glucose-deprivation (OGD)). We also examined the expression profiles of other inflammasomes (NLRC4, AIM2, ASC) and caspase-1 activity after OGD. OGD triggered caspase-1 activity and increased IL-1ß secretion in BV-2 cells with no alteration after NLRP3 depletion. The expression of the AIM2 inflammasome was significantly higher after OGD in NLRP3-depleted cells, whereas NLRC4 was unaltered in all groups. Interestingly, OGD induced a complete inactivation of phagocytic activity in wild-type cells, while in NLRP3-depleted BV-2, this inactivity was restored after hypoxia. Our findings indicate a minor role of NLRP3 in the inflammatory response after hypoxic/ischemic stimulus. However, NLRP3 seems to play a pivotal role in the regulation of post-ischemic phagocytosis. This might be a prerequisite for the putative neuroprotective effect.


Assuntos
Hipóxia Celular/fisiologia , Inflamação/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fagocitose/fisiologia , Animais , Caspase 1/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...