Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cytotherapy ; 26(4): 334-339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363249

RESUMO

BACKGROUND AIMS: The success of allogeneic hematopoietic cell transplantation (HCT) as therapy for hematologic conditions is negatively impacted by the occurrence of graft-versus-host disease (GVHD). Tissue damage, caused, for example, by chemotherapy and radiotherapy, is a key factor in GVHD pathogenesis. Innate lymphoid cells (ILCs) are important mediators of tissue repair and homeostasis. The presence of ILCs before, and enhanced ILC reconstitution after, allogeneic HCT is associated with a reduced risk to develop mucositis and GVHD. However, ILC reconstitution after allogeneic HCT is slow and often incomplete. A way to replenish the pool of ILC relies on the differentiation of hematopoietic progenitor cells (HPCs) into ILC. METHODS: We developed an ex vivo stromal cell-containing culture system to study the capacity of HPCs to differentiate into all mature helper ILC subsets. RESULTS: ILC development depended on the source of HPCs. ILCs developed at high frequencies from umbilical cord blood- and fetal liver-derived HPC and at low frequencies when HPCs were obtained from allogeneic or autologous adult HCT grafts or healthy adult bone marrow. Although all helper ILC subsets could be generated from adult HPC sources, development of tissue protective ILC2 and NKp44+ ILC3 was notoriously difficult. CONCLUSIONS: Our data suggest that slow ILC recovery after allogeneic HCT may be related to an intrinsic incapability of adult HPC to develop into ILC.


Assuntos
Doença Enxerto-Hospedeiro , Linfócitos , Adulto , Humanos , Imunidade Inata , Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/terapia , Doença Enxerto-Hospedeiro/etiologia , Medula Óssea
2.
Cytotherapy ; 26(2): 136-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149947

RESUMO

Type 3 innate lymphoid cells (ILC3) are important in tissue homeostasis. In the gut, ILC3 repair damaged epithelium and suppress inflammation. In allogeneic hematopoietic cell transplantation (HCT), ILC3 protect against graft-versus-host disease (GvHD), most likely by restoring tissue damage and preventing inflammation. We hypothesize that supplementing HCT grafts with interleukin-22 (IL-22)-producing ILC3 may prevent acute GvHD. We therefore explored ex vivo generation of human IL-22-producing ILC3 from hematopoietic stem and progenitor cells (HSPC) obtained from adult, neonatal and fetal sources. We established a stroma-free system culturing human cord blood-derived CD34+ HSPC with successive cytokine mixes for 5 weeks. We analyzed the presence of phenotypically defined ILC, their viability, proliferation and IL-22 production (after stimulation) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We found that the addition of recombinant human IL-15 and the enhancer of zeste homolog 1/2 inhibitor UNC1999 promoted ILC3 generation. Similar results were demonstrated when UNC1999 was added to CD34+ HSPC derived from healthy adult granulocyte colony-stimulating factor mobilized peripheral blood and bone marrow, but not fetal liver. UNC1999 did not negatively impact IL-22 production in any of the HSPC sources. Finally, we observed that autologous HSPC mobilized from the blood of adults with hematological malignancies also developed into ILC3, albeit with a significantly lower capacity. Together, we developed a stroma-free protocol to generate large quantities of IL-22-producing ILC3 from healthy adult human HSPC that can be applied for adoptive transfer to prevent GvHD after allogeneic HCT.


Assuntos
Benzamidas , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Indazóis , Piperazinas , Piridonas , Adulto , Recém-Nascido , Humanos , Imunidade Inata , Linfócitos/química , Antígenos CD34/análise , Transplante de Células-Tronco Hematopoéticas/métodos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Doença Enxerto-Hospedeiro/prevenção & controle , Inflamação , Transferência Adotiva
3.
N Engl J Med ; 387(23): 2113-2125, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36477031

RESUMO

BACKGROUND: Immune checkpoint inhibitors and targeted therapies have dramatically improved outcomes in patients with advanced melanoma, but approximately half these patients will not have a durable benefit. Phase 1-2 trials of adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) have shown promising responses, but data from phase 3 trials are lacking to determine the role of TILs in treating advanced melanoma. METHODS: In this phase 3, multicenter, open-label trial, we randomly assigned patients with unresectable stage IIIC or IV melanoma in a 1:1 ratio to receive TIL or anti-cytotoxic T-lymphocyte antigen 4 therapy (ipilimumab at 3 mg per kilogram of body weight). Infusion of at least 5×109 TILs was preceded by nonmyeloablative, lymphodepleting chemotherapy (cyclophosphamide plus fludarabine) and followed by high-dose interleukin-2. The primary end point was progression-free survival. RESULTS: A total of 168 patients (86% with disease refractory to anti-programmed death 1 treatment) were assigned to receive TILs (84 patients) or ipilimumab (84 patients). In the intention-to-treat population, median progression-free survival was 7.2 months (95% confidence interval [CI], 4.2 to 13.1) in the TIL group and 3.1 months (95% CI, 3.0 to 4.3) in the ipilimumab group (hazard ratio for progression or death, 0.50; 95% CI, 0.35 to 0.72; P<0.001); 49% (95% CI, 38 to 60) and 21% (95% CI, 13 to 32) of the patients, respectively, had an objective response. Median overall survival was 25.8 months (95% CI, 18.2 to not reached) in the TIL group and 18.9 months (95% CI, 13.8 to 32.6) in the ipilimumab group. Treatment-related adverse events of grade 3 or higher occurred in all patients who received TILs and in 57% of those who received ipilimumab; in the TIL group, these events were mainly chemotherapy-related myelosuppression. CONCLUSIONS: In patients with advanced melanoma, progression-free survival was significantly longer among those who received TIL therapy than among those who received ipilimumab. (Funded by the Dutch Cancer Society and others; ClinicalTrials.gov number, NCT02278887.).


Assuntos
Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Melanoma , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Ipilimumab/efeitos adversos , Melanoma/tratamento farmacológico
4.
CRISPR J ; 5(5): 702-716, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36169633

RESUMO

Ribonucleoproteins (RNPs) are frequently applied for therapeutic gene editing as well as fundamental research because the method is fast, viral free, and shows fewest off target effects. We evaluated various parameters to genetically engineer human hematopoietic stem and progenitor cells (HSPCs) using Streptococcus pyogenes Cas9 (spCas9) RNPs, and achieve gene editing efficiencies up to 80%. We find that guide RNA (gRNA) design is critical to achieve high gene editing efficiencies. However, finding effective gRNAs for HSPCs can be challenging, while the contribution of numerous in silico models is unclear. By screening more than 120 gRNAs, our data demonstrate that in silico gRNA prediction models are ineffective. In this study, we established a time- and cost-efficient in vitro transcribed gRNA screening model in K562 cells that predicts effective gRNAs for HSPCs. RNP based screening thus outperforms in silico modeling and we report that gene editing is equally efficient in distinct CD34+ HSPC subpopulations. Furthermore, no effects on cell proliferation, differentiation, or in vitro hematopoietic lineage commitment were observed. Finally, no upregulation of p21 expression was found, suggesting unperturbed HSPC homeostasis.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Streptococcus pyogenes/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células-Tronco Hematopoéticas/metabolismo
5.
Eur J Haematol ; 109(3): 271-281, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35617105

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) and nucleosomes, consisting of cfDNA and histones, are markers of cell activation and damage. In systemic inflammation these markers predict severity and fatality. However, the role of cfDNA in acute Graft-versus-Host Disease (aGvHD), a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), is unknown. OBJECTIVE: The aim of this study is to investigate the role of cfDNA as a marker of aGvHD. METHODS: We followed nucleosome levels in 37 allogeneic HSCT patients and an established xenotransplantation mouse model. We determined the origin of cfDNA with a species-specific polymerase chain reaction. RESULTS: In the plasma of aGvHD patients, nucleosome levels significantly increased around the time of aGvHD diagnosis compared to pretransplant, concurrently with a significant increase of known aGvHD markers ST2 and REG3α. In mice, we confirmed that nucleosomes were elevated during clinically detectable aGvHD. We found cfDNA to be mainly of human origin and to a lesser extent of mouse origin, indicating that cfDNA is released by (proliferating) human xeno-reactive PBMC and damaged mouse cells. CONCLUSION: We show increased cfDNA both in an aGvHD mouse model and in aGvHD patients. We also demonstrate that donor hematopoietic cells and to a lesser degree (damaged) host cells are the cellular source of cfDNA in aGvHD. We propose that nucleosomes and cfDNA might be an additive marker for aGvHD.


Assuntos
Ácidos Nucleicos Livres , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Animais , Biomarcadores , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucócitos Mononucleares , Camundongos , Nucleossomos
6.
Cytotherapy ; 24(3): 302-310, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058143

RESUMO

BACKGROUND: Allogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties. After chemo- and radiotherapy, ILCs are depleted, and recovery after remission-induction therapy and after allogeneic HCT is slow and incomplete in a significant number of patients, which is associated with an increased risk to develop acute GvHD. OBJECTIVE: To investigate whether the presence of mature ILCs within G-CSF-mobilized HCT grafts is correlated with the development of acute GvHD after allogeneic HCT. STUDY DESIGN: We analyzed ILCs in a cohort of 36 patients who received allogeneic HCT for a hematologic malignancy, by flow-cytometric immune-phenotyping of prospectively collected, cryopreserved peripheral blood mononuclear cells (PBMCs) and donor-derived HCT grafts collected for the same patients. Biased analysis, with ILCs defined as CD3-lineage-CD45+CD127+CD161+ lymphocytes, was performed using FlowJo version 10 software. Unbiased analysis was done using FlowSOM, which uses a self-organizing map (SOM) with a minimal spanning tree (MST) to define and visualize different clusters present in the samples. RESULTS: Remission-induction therapy significantly depleted ILCs from the blood, and patients who had a relatively low percentage of ILCs before allogeneic HCT were significantly more prone to develop acute GvHD, confirming previous findings in a separate cohort. Allogeneic HCT grafts, which were all obtained from the blood of G-CSF-mobilized healthy donors, contained ILCs at a frequency very similar to the peripheral blood of healthy individuals. The ILC subset composition was also comparable to that of the blood of healthy individuals, with the exception of NKp44+ ILC3s, which were significantly more abundant in HCT grafts. The relative ILC content of the graft tended to correlate with ILC reconstitution after allogeneic HCT, suggesting that peripheral expansion of transplanted mature ILCs may contribute to early ILC reconstitution after allogeneic HCT. Patients who received a relatively ILC-poor HCT graft had a significantly increased risk to develop acute GvHD, compared with patients who received relatively ILC-rich allogeneic HCT grafts. Unbiased phenotypic analysis with the FlowSOM algorithm confirmed that allogeneic HCT grafts of patients who developed acute GvHD contained a lower frequency of ILCs that clustered in NKp44+ ILC3 signature groups. CONCLUSION: The presence of ILCs in allogeneic HCT grafts is associated with a reduced risk to develop acute GvHD. These data suggest that enhancement of ILC reconstitution of ILC3s in particular, for example via adoptive transfer of ILCs, may prevent acute GvHD and has the potential to improve outcome of allogeneic HCT recipients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Fator Estimulador de Colônias de Granulócitos/farmacologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunidade Inata , Leucócitos Mononucleares , Linfócitos
7.
Eur Heart J ; 42(42): 4309-4320, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34343254

RESUMO

AIM: Preclinical work indicates that low-density lipoprotein cholesterol (LDL-C) not only drives atherosclerosis by directing the innate immune response at plaque level but also augments proinflammatory monocyte production in the bone marrow (BM) compartment. In this study, we aim to unravel the impact of LDL-C on monocyte production in the BM compartment in human subjects. METHODS AND RESULTS: A multivariable linear regression analysis in 12 304 individuals of the EPIC-Norfolk prospective population study showed that LDL-C is associated with monocyte percentage (ß = 0.131 [95% CI: 0.036-0.225]; P = 0.007), at the expense of granulocytes (ß = -0.876 [95% CI: -1.046 to -0.705]; P < 0.001). Next, we investigated whether altered haematopoiesis could explain this monocytic skewing by characterizing CD34+ BM haematopoietic stem and progenitor cells (HSPCs) of patients with familial hypercholesterolaemia (FH) and healthy normocholesterolaemic controls. The HSPC transcriptomic profile of untreated FH patients showed increased gene expression in pathways involved in HSPC migration and, in agreement with our epidemiological findings, myelomonocytic skewing. Twelve weeks of cholesterol-lowering treatment reverted the myelomonocytic skewing, but transcriptomic enrichment of monocyte-associated inflammatory and migratory pathways persisted in HSPCs post-treatment. Lastly, we link hypercholesterolaemia to perturbed lipid homeostasis in HSPCs, characterized by lipid droplet formation and transcriptomic changes compatible with increased intracellular cholesterol availability. CONCLUSIONS: Collectively, these data highlight that LDL-C impacts haematopoiesis, promoting both the number and the proinflammatory activation of circulating monocytes. Furthermore, this study reveals a potential contributory role of HSPC transcriptomic reprogramming to residual inflammatory risk in FH patients despite cholesterol-lowering therapy.


Assuntos
Medula Óssea , Monócitos , Colesterol , Hematopoese , Humanos , Estudos Prospectivos
8.
Transpl Immunol ; 68: 101419, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089821

RESUMO

The intracellular enzyme heme oxygenase-1 (HO-1) is responsible for the degradation of cell-free (cf) heme. Cfheme, released upon cell damage and cell death from hemoglobin, mitochondria and myoglobin, functions as a powerful damage-associated molecular pattern (DAMP). Indeed, cfheme plays a role in a myriad of diseases characterized by (systemic) inflammation, and its rapid degradation by HO-1 is pivotal to maintain homeostasis. In the past decade, HO-1 has been extensively studied for its potential protective role in different transplantation settings, including allogeneic hematopoietic stem cell transplantation (HSCT), solid organ transplantation and pancreatic islet transplantation. These studies have shown that HO-1 can be induced by a wide range of molecules, and that induction of HO-1 has the potential to significantly reduce the incidence and severity of transplantation-related complications such as graft-versus-host disease (GvHD) and ischemia/reperfusion injury (IRI). As such, further investigation into the use of HO-1-inducing agents in human transplantation settings to facilitate the potential use of these agents in the clinic is warranted. In this review, we summarize the literature of the past 10 years on the role of HO-1 in allogeneic HSCT, solid organ transplantation (focusing on kidney and liver) and pancreatic islet transplantation. Furthermore, we provide a hypothesis about the way that HO-1 is able to provide protection against acute GvHD after allogeneic HSCT. A total of 48 research articles and 17 review articles were included in this review.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Órgãos , Traumatismo por Reperfusão , Heme Oxigenase-1 , Humanos
9.
Front Bioeng Biotechnol ; 9: 640419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718342

RESUMO

Recently, we and others have illustrated that extracellular vesicles (EVs) have the potential to support hematopoietic stem and progenitor cell (HSPC) expansion; however, the mechanism and processes responsible for the intercellular communication by EVs are still unknown. In the current study, we investigate whether primary human bone marrow derived mesenchymal stromal cells (BMSC) EVs isolated from two different origins, fetal (fEV) and adult (aEV) tissue, can increase the relative low number of HSPCs found in umbilical cord blood (UCB) and which EV-derived components are responsible for ex vivo HSPC expansion. Interestingly, aEVs and to a lesser extent fEVs, showed supportive ex vivo expansion capacity of UCB-HSPCs. Taking advantage of the two BMSC sources with different supportive effects, we analyzed the EV cargo and investigated how gene expression is modulated in HSPCs after incubation with aEVs and fEVs. Proteomics analyses of the protein cargo composition of the supportive aEV vs. the less-supportive fEV identified 90% of the Top100 exosome proteins present in the ExoCarta database. Gene Ontology (GO) analyses illustrated that the proteins overrepresented in aEVs were annotated to oxidation-reduction process, mitochondrial ATP synthesis coupled proton transport, or protein folding. In contrast, the proteins overrepresented in fEVs were annotated to extracellular matrix organization positive regulation of cell migration or transforming growth factor beta receptor (TGFBR) signaling pathway. Small RNA sequencing identified different molecular signatures between aEVs and fEVs. Interestingly, the microRNA cluster miR-99b/let-7e/miR-125a, previously identified to increase the number of HSPCs by targeting multiple pro-apoptotic genes, was highly and significantly enriched in aEVs. Although we identified significant differences in the supportive effects of aEVs and fEVs, RNAseq analyses of the 24 h treated HSPCs indicated that a limited set of genes was differentially regulated when compared to cells that were treated with cytokines only. Together, our study provides novel insights into the complex biological role of EVs and illustrates that aEVs and fEVs differentially support ex vivo expansion capacity of UCB-HSPCs. Together opening new means for the application of EVs in the discovery of therapeutics for more efficient ex vivo HSPC expansion.

10.
J Pers Med ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668854

RESUMO

Neuroblastoma is one of the most common pediatric cancers and a major cause of cancer-related death in infancy. Conventional therapies including high-dose chemotherapy, stem cell transplantation, and immunotherapy approach a limit in the treatment of high-risk neuroblastoma and prevention of relapse. In the last two decades, research unraveled a potential use of mesenchymal stromal cells in tumor therapy, as tumor-selective delivery vehicles for therapeutic compounds and oncolytic viruses and by means of supporting hematopoietic stem cell transplantation. Based on pre-clinical and clinical advances in neuroblastoma and other malignancies, we assess both the strong potential and the associated risks of using mesenchymal stromal cells in the therapy for neuroblastoma. Furthermore, we examine feasibility and safety aspects and discuss future directions for harnessing the advantageous properties of mesenchymal stromal cells for the advancement of therapy success.

11.
Eur J Immunol ; 51(6): 1377-1389, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33728639

RESUMO

The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4+ T cell compartment. Naïve and CXCR5+ regulatory T cells were GPA33high , and naïve conventional CD4+ T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4+ central memory T cell (Tcm) population. GPA33+ CD4+ Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33- Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4+ T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4+ T cell lineage.


Assuntos
Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Leucócitos Mononucleares/imunologia , Glicoproteínas de Membrana/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Diferenciação Celular , Linhagem da Célula , Separação Celular , Citometria de Fluxo , Células HEK293 , Humanos , Imunidade Inata , Memória Imunológica , Glicoproteínas de Membrana/genética , Receptores CXCR5/metabolismo
12.
Cells ; 11(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011617

RESUMO

Apart from controlling hematopoiesis, the bone marrow (BM) also serves as a secondary lymphoid organ, as it can induce naïve T cell priming by resident dendritic cells (DC). When analyzing DCs in murine BM, we uncovered that they are localized around sinusoids, can (cross)-present antigens, become activated upon intravenous LPS-injection, and for the most part belong to the cDC2 subtype which is associated with Th2/Th17 immunity. Gene-expression profiling revealed that BM-resident DCs are enriched for several c-type lectins, including Dectin-1, which can bind beta-glucans expressed on fungi and yeast. Indeed, DCs in BM were much more efficient in phagocytosis of both yeast-derived zymosan-particles and Aspergillus conidiae than their splenic counterparts, which was highly dependent on Dectin-1. DCs in human BM could also phagocytose zymosan, which was dependent on ß1-integrins. Moreover, zymosan-stimulated BM-resident DCs enhanced the differentiation of hematopoietic stem and progenitor cells towards neutrophils, while also boosting the maintenance of these progenitors. Our findings signify an important role for BM DCs as translators between infection and hematopoiesis, particularly in anti-fungal immunity. The ability of BM-resident DCs to boost neutrophil formation is relevant from a clinical perspective and contributes to our understanding of the increased susceptibility for fungal infections following BM damage.


Assuntos
Antígenos de Fungos/imunologia , Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Neutrófilos/imunologia , Idoso , Idoso de 80 Anos ou mais , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Inflamação/patologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Antígeno de Macrófago 1/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zimosan/metabolismo
13.
Stem Cells Dev ; 30(2): 59-78, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33287630

RESUMO

Neuroblastoma (NB) is the second most common solid cancer in childhood, accounting for 15% of cancer-related deaths in children. In high-risk NB patients, the majority suffers from metastasis. Despite intensive multimodal treatment, long-term survival remains <40%. The bone marrow (BM) is among the most common sites of distant metastasis in patients with high-risk NB. In this environment, small populations of tumor cells can persist after treatment (minimal residual disease) and induce relapse. Therapy resistance of these residual tumor cells in BM remains a major obstacle for the cure of NB. A detailed understanding of the microenvironment and its role in tumor progression is of utmost importance for improving the treatment efficiency of NB. In BM, mesenchymal stromal cells (MSCs) constitute an important part of the microenvironment, where they support hematopoiesis and modulate immune responses. Their role in tumor progression is not completely understood, especially for NB. Although MSCs have been found to promote epithelial-mesenchymal transition, tumor growth, and metastasis and to induce chemoresistance, some reports point toward a tumor-suppressive effect of MSCs. In this review, we aim to compile current knowledge about the role of MSCs in NB development and progression. We evaluate arguments that depict tumor-supportive versus -suppressive properties of MSCs in the context of NB and give an overview of factors involved in MSC-NB crosstalk. A focus lies on the BM as a metastatic niche, since that is the predominant site for NB metastasis and relapse. Finally, we will present opportunities and challenges for therapeutic targeting of MSCs in the BM microenvironment.


Assuntos
Diferenciação Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Hematopoese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Neuroblastoma/metabolismo , Nicho de Células-Tronco/fisiologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Criança , Humanos , Células-Tronco Mesenquimais/citologia , Metástase Neoplásica , Recidiva Local de Neoplasia , Neuroblastoma/patologia , Neuroblastoma/terapia , Microambiente Tumoral
14.
Haematologica ; 105(12): 2746-2756, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256374

RESUMO

Bone marrow endothelium plays an important role in the homing of hematopoietic stem and progenitor cells upon transplantation, but surprisingly little is known on how the bone marrow endothelial cells regulate local permeability and hematopoietic stem and progenitor cells transmigration. We show that temporal loss of vascular endothelial-cadherin function promotes vascular permeability in BM, even upon low-dose irradiation. Loss of vascular endothelial-cadherin function also enhances homing of transplanted hematopoietic stem and progenitor cells to the bone marrow of irradiated mice although engraftment is not increased. Intriguingly, stabilizing junctional vascular endothelial-cadherin in vivo reduced bone marrow permeability, but did not prevent hematopoietic stem and progenitor cells migration into the bone marrow, suggesting that hematopoietic stem and progenitor cells use the transcellular migration route to enter the bone marrow. Indeed, using an in vitro migration assay, we show that human hematopoietic stem and progenitor cells predominantly cross bone marrow endothelium in a transcellular manner in homeostasis by inducing podosome-like structures. Taken together, vascular endothelial-cadherin is crucial for BM vascular homeostasis but dispensable for the homing of hematopoietic stem and progenitor cells. These findings are important in the development of potential therapeutic targets to improve hematopoietic stem and progenitor cell homing strategies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Podossomos , Animais , Medula Óssea , Células da Medula Óssea , Movimento Celular , Células Endoteliais , Endotélio , Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL
15.
Cancers (Basel) ; 12(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147765

RESUMO

Background: The bone marrow (BM) is the main site of metastases and relapse in patients with neuroblastoma (NB). BM-residing mesenchymal stromal cells (MSCs) were shown to promote tumor cell survival and chemoresistance. Here we characterize the MSC compartment of the metastatic NB BM niche. Methods: Fresh BM of 62 NB patients (all stages), and control fetal and adult BM were studied by flow cytometry using well-established MSC-markers (CD34-, CD45-, CD90+, CD105+), and CD146 and CD271 subtype-markers. FACS-sorted BM MSCs and tumor cells were validated by qPCR. Moreover, isolated MSCs were tested for multilineage differentiation and Colony-forming-unit-fibroblasts (CFU-Fs) capacity. Results: Metastatic BM contains a higher number of MSCs (p < 0.05) with increased differentiation capacity towards the osteoblast lineage. Diagnostic BM contains a MSC-subtype (CD146+CD271-), only detected in BM of patients with metastatic-NB, determined by flow cytometry. FACS-sorting clearly discriminated MSC(-subtypes) and NB fractions, validated by mRNA and DNA qPCR. Overall, the CD146+CD271- subtype decreased during therapy and was detected again in the majority of patients at relapse. Conclusions: We demonstrate that the neuroblastoma BM-MSC compartment is different in quantity and functionality and contains a metastatic-niche-specific MSC-subtype. Ultimately, the MSCs contribution to tumor progression could provide targets with potential for eradicating resistant metastatic disease.

16.
Blood ; 136(4): 410-417, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32525970

RESUMO

The success of allogeneic hematopoietic cell transplantation depends heavily on the delicate balance between the activity of the donor immune system against malignant and nonmalignant cells of the recipient. Abrogation of alloreactivity will lead to disease relapse, whereas untamed allo-immune responses will lead to lethal graft-versus-host disease (GVHD). A number of cell types have been identified that can be used to suppress alloreactive immune cells and prevent lethal GVHD in mice. Of those, mesenchymal stromal cells and, to a lesser extent, regulatory T cells have demonstrated efficacy in humans. Ideally, cellular therapy for GVHD will not affect alloreactive immune responses against tumor cells. The importance of tissue damage in the pathophysiology of GVHD rationalizes the development of cells that support tissue homeostasis and repair, such as innate lymphoid cells. We discuss recent developments in the field of cellular therapy to prevent and treat acute and chronic GVHD, in the context of GVHD pathophysiology.


Assuntos
Doença Enxerto-Hospedeiro , Tolerância Imunológica , Imunidade Inata , Linfócitos T Reguladores/imunologia , Imunologia de Transplantes , Animais , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Camundongos , Linfócitos T Reguladores/patologia , Transplante Homólogo
17.
FASEB J ; 34(4): 5435-5452, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086861

RESUMO

Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood-derived CD34+ HSPCs with stimulatory EVs-altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell-HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.


Assuntos
Diferenciação Celular , Linhagem da Célula , Vesículas Extracelulares/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Osteoblastos/citologia , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Osteoblastos/metabolismo , Transcriptoma
18.
Sci Rep ; 9(1): 14401, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591420

RESUMO

Culture expanded mesenchymal stromal cells (MSCs) are being extensively studied for therapeutic applications, including treatment of graft-versus-host disease, osteogenesis imperfecta and for enhancing engraftment of hematopoietic stem cells after transplantation. Thus far, clinical trials have shown that the therapeutic efficiency of MSCs is variable, which may in part be due to inefficient cell migration. Here we demonstrate that human MSCs display remarkable low migratory behaviour compared to other mesodermal-derived primary human cell types. We reveal that specifically in MSCs the nucleus is irregularly shaped and nuclear lamina are prone to wrinkling. In addition, we show that expression of Lamin A/C is relatively high in MSCs. We further demonstrate that in vitro MSC migration through confined pores is limited by their nuclei, a property that might correlate to the therapeutic inefficiency of administered MSC in vivo. Silencing expression of Lamin A/C in MSCs improves nuclear envelope morphology, promotes the protrusive activity of MSCs through confined pores and enhances their retention in the lung after intravenous administration in vivo. Our findings suggest that the intrinsic nuclear lamina properties of MSCs underlie their limited capacity to migrate, and that strategies that target the nuclear lamina might alter MSC-based cellular therapies.


Assuntos
Forma do Núcleo Celular , Regulação da Expressão Gênica , Lamina Tipo A/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adulto , Movimento Celular , Humanos , Membrana Nuclear/metabolismo , Porosidade
20.
Eur J Immunol ; 49(4): 576-589, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30707456

RESUMO

The BM serves as a blood-forming organ, but also supports the maintenance and immune surveillance function of many T cells. Yet, in contrast to other organs, little is known about the molecular mechanisms that drive T-cell migration to and localization inside the BM. As BM accumulates many CXCR3-expressing memory CD8+ T cells, we tested the involvement of this chemokine receptor, but found that CXCR3 is not required for BM entry. In contrast, we could demonstrate that CXCR4, which is highly expressed on both naive and memory CD8+ T cells in BM, is critically important for homing of all CD8+ T-cell subsets to the BM in mice. Upon entry into the BM parenchyma, both naïve and memory CD8+ T cells locate close to sinusoidal vessels. Intravital imaging experiments revealed that CD8 T cells are surprisingly immobile and we found that they interact with ICAM-1+VCAM-1+BP-1+ perivascular stromal cells. These cells are the major source of CXCL12, but also express key survival factors and maintenance cytokines IL-7 and IL-15. We therefore conclude that CXCR4 is not only crucial for entry of CD8+ T cells into the BM, but also controls their subsequent localization toward BM niches that support their survival.


Assuntos
Medula Óssea/imunologia , Medula Óssea/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/imunologia , Microambiente Celular , Receptores CXCR4/metabolismo , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular/imunologia , Microambiente Celular/genética , Microambiente Celular/imunologia , Citocinas/biossíntese , Memória Imunológica , Camundongos , Receptores CXCR3 , Células Estromais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...