Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743186

RESUMO

The serine protease prostasin (CAP1/Prss8, channel-activating protease-1) is a confirmed in vitro and in vivo activator of the epithelial sodium channel ENaC. To test whether proteolytic activity or CAP1/Prss8 abundance itself are required for ENaC activation in the kidney, we studied animals either hetero- or homozygous mutant at serine 238 (S238A; Prss8cat/+ and Prss8cat/cat), and renal tubule-specific CAP1/Prss8 knockout (Prss8PaxLC1) mice. When exposed to varying Na+-containing diets, no changes in Na+ and K+ handling and only minor changes in the expression of Na+ and K+ transporting protein were found in both models. Similarly, the α- or γENaC subunit cleavage pattern did not differ from control mice. On standard and low Na+ diet, Prss8cat/+ and Prss8cat/cat mice exhibited standard plasma aldosterone levels and unchanged amiloride-sensitive rectal potential difference indicating adapted ENaC activity. Upon Na+ deprivation, mice lacking the renal CAP1/Prss8 expression (Prss8PaxLC1) exhibit significantly decreased plasma aldosterone and lower K+ levels but compensate by showing significantly higher plasma renin activity. Our data clearly demonstrated that the catalytic activity of CAP1/Prss8 is dispensable for proteolytic ENaC activation. CAP1/Prss8-deficiency uncoupled ENaC activation from its aldosterone dependence, but Na+ homeostasis is maintained through alternative pathways.


Assuntos
Aldosterona , Sódio , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Camundongos , Oligopeptídeos , Serina Endopeptidases , Sódio/metabolismo
2.
FEBS J ; 289(12): 3416-3418, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35220685

RESUMO

Understanding how HAI-1 and HAI-2 regulate the epithelial serine protease matriptase may hold the key to curing epithelial-derived cancer. HAIs are serine protease inhibitors that inhibit matriptase and have a poorly understood effect on the presence of matriptase protein in cells. In this issue of The FEBS Journal, Yamashita et al. provide much-needed new insights into this effect, describing it as a 'chaperone-like function' of HAI-1. However, several observations suggest that matriptase folds correctly without HAIs and that HAIs are not chaperones. We introduce the concept of 'ally proteins' to categorize the poorly understood function of HAIs, distinguishing them from chaperones. Comment on: https://doi.org/10.1111/febs.16348.


Assuntos
Glicoproteínas de Membrana , Neoplasias , Proteínas Secretadas Inibidoras de Proteinases , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Serina Endopeptidases
3.
Biochem J ; 477(22): 4349-4365, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33094801

RESUMO

The membrane-associated prostasin and matriptase belonging to the S1A subfamily of serine proteases, are critical for epithelial development and maintenance. The two proteases are involved in the activation of each other and are both regulated by the protease inhibitors, HAI-1 and HAI-2. The S1A subfamily of serine proteases are generally produced as inactive zymogens requiring a cleavage event to obtain activity. However, contrary to the common case, the zymogen form of matriptase exhibits proteolytic activity, which can be inhibited by HAI-1 and HAI-2, as for the activated counterpart. We provide strong evidence that also prostasin exhibits proteolytic activity in its zymogen form. Furthermore, we show that the activity of zymogen prostasin can be inhibited by HAI-1 and HAI-2. We report that zymogen prostasin is capable of activating zymogen matriptase, but unable to activate its own zymogen form. We propose the existence of an unusual enzyme-enzyme relationship consisting of proteolytically active zymogen forms of both matriptase and prostasin, kept under control by HAI-1 and HAI-2, and located at the pinnacle of an important proteolytic pathway in epithelia. Perturbed balance in this proteolytic system is likely to cause rapid and efficient activation of matriptase by the dual action of zymogen matriptase and zymogen prostasin. Previous studies suggest that the zymogen form of matriptase performs the normal proteolytic functions of the protease, whereas excess matriptase activation likely causes carcinogenesis. HAI-1 and HAI-2 are thus important for the prevention of matriptase activation whether catalysed by zymogen/activated prostasin (this study) or zymogen/activated matriptase (previous studies).


Assuntos
Precursores Enzimáticos/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Precursores Enzimáticos/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Serina Endopeptidases/genética
4.
Biochem J ; 477(9): 1779-1794, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32338287

RESUMO

The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s). Activated matriptase is inhibited by the two Kunitz-type inhibitor domain-containing hepatocyte growth factor activator inhibitors 1 (HAI-1) and HAI-2, however, it remains unknown whether the activity of the matriptase zymogen is regulated. Using both purified proteins and a cell-based assay, we show that the catalytic activity of the matriptase zymogen towards a peptide-based substrate as well as the natural protein substrates, pro-HGF and pro-prostasin, can be inhibited by HAI-1 and HAI-2. Inhibition of zymogen matriptase by HAI-1 and HAI-2 appears similar to inhibition of activated matriptase and occurs at comparable inhibitor concentrations. This indicates that HAI-1 and HAI-2 interact with the active sites of zymogen and activated matriptase in a similar manner. Our results suggest that HAI-1 and HAI-2 regulate matriptase zymogen activity and thus may act as regulators of matriptase trans(auto)-activation. Due to the main localisation of HAI-2 in the ER and HAI-1 in the secretory pathway and on the cell surface, this regulation likely occurs both in the secretory pathway and on the plasma membrane. Regulation of an active zymogen form of a protease is a novel finding.


Assuntos
Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Serina Endopeptidases/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Via Secretória
5.
Hum Mol Genet ; 28(5): 828-841, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445423

RESUMO

The syndromic form of congenital sodium diarrhea (SCSD) is caused by bi-allelic mutations in SPINT2, which encodes a Kunitz-type serine protease inhibitor (HAI-2). We report three novel SCSD patients, two novel SPINT2 mutations and review published cases. The most common findings in SCSD patients were choanal atresia (20/34) and keratitis of infantile onset (26/34). Characteristic epithelial tufts on intestinal histology were reported in 13/34 patients. Of 13 different SPINT2 variants identified in SCSD, 4 are missense variants and localize to the second Kunitz domain (KD2) of HAI-2. HAI-2 has been implicated in the regulation of the activities of several serine proteases including prostasin and matriptase, which are both important for epithelial barrier formation. No patient with bi-allelic stop mutations was identified, suggesting that at least one SPINT2 allele encoding a protein with residual HAI-2 function is necessary for survival. We show that the SCSD-associated HAI-2 variants p.Phe161Val, p.Tyr163Cys and p.Gly168Ser all display decreased ability to inhibit prostasin-catalyzed cleavage. However, the SCSD-associated HAI-2 variants inhibited matriptase as efficiently as the wild-type HAI-2. Homology modeling indicated limited solvent exposure of the mutated amino acids, suggesting that they induce misfolding of KD2. This suggests that prostasin needs to engage with an exosite motif located on KD2 in addition to the binding loop (Cys47/Arg48) located on the first Kunitz domain in order to inhibit prostasin. In conclusion our data suggests that SCSD is caused by lack of inhibition of prostasin or a similar protease in the secretory pathway or on the plasma membrane.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Diarreia/congênito , Regulação da Expressão Gênica , Glicoproteínas de Membrana/genética , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mutação de Sentido Incorreto , Serina Endopeptidases/metabolismo , Adolescente , Sequência de Aminoácidos , Criança , Pré-Escolar , Diarreia/genética , Diarreia/metabolismo , Suscetibilidade a Doenças , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Fenótipo , Relação Estrutura-Atividade
6.
J Biol Chem ; 294(1): 314-326, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409910

RESUMO

Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its in vivo functions, which include activating several proteolytic and signaling cascades. Inhibition of zymogen matriptase may therefore be a highly effective approach for limiting matriptase activity. To this end, here we sought to characterize the catalytic activity of human zymogen matriptase and to develop mAb inhibitors against this enzyme form. Using a mutated variant of matriptase in which the serine protease domain is locked in the zymogen conformation, we confirmed that the zymogen form of human matriptase has catalytic activity. Moreover, the crystal structure of the catalytic domain of zymogen matriptase was solved to 2.5 Å resolution to characterize specific antibody-based matriptase inhibitors and to further structure-based studies. Finally, we describe the first antibody-based competitive inhibitors that target both the zymogen and activated forms of matriptase. We propose that these antibodies provide a more efficient way to regulate matriptase activity by targeting the protease both before and after its activation and may be of value for both research and preclinical applications.


Assuntos
Anticorpos Monoclonais/química , Precursores Enzimáticos/química , Inibidores de Proteases/química , Proteólise , Serina Endopeptidases/química , Cristalografia por Raios X , Precursores Enzimáticos/antagonistas & inibidores , Células HEK293 , Humanos , Domínios Proteicos
7.
Traffic ; 18(6): 378-391, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371047

RESUMO

It has recently been shown that hepatocyte growth factor activator inhibitor-2 (HAI-2) is able to suppress carcinogenesis induced by overexpression of matriptase, as well as cause regression of individual established tumors in a mouse model system. However, the role of HAI-2 is poorly understood. In this study, we describe 3 mutations in the binding loop of the HAI-2 Kunitz domain 1 (K42N, C47F and R48L) that cause a delay in the SEA domain cleavage of matriptase, leading to accumulation of non-SEA domain cleaved matriptase in the endoplasmic reticulum (ER). We suggest that, like other known SEA domains, the matriptase SEA domain auto-cleaves and reflects that correct oligomerization, maturation, and/or folding has been obtained. Our results suggest that the HAI-2 Kunitz domain 1 mutants influence the flux of matriptase to the plasma membrane by affecting the oligomerization, maturation and/or folding of matriptase, and as a result the SEA domain cleavage of matriptase. Two of the HAI-2 Kunitz domain 1 mutants investigated (C47F, R48L and C47F/R48L) also displayed a reduced ability to proteolytically silence matriptase. Hence, HAI-2 separately stabilizes matriptase, regulates the secretory transport, possibly via maturation/oligomerization and inhibits the proteolytic activity of matriptase in the ER, and possible throughout the secretory pathway.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Domínios Proteicos , Proteólise
8.
J Hypertens ; 34(2): 298-306, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26867056

RESUMO

OBJECTIVE: Preeclampsia is characterized by disturbed placentation, hypertension, proteinuria, and suppression of plasma renin, angiotensin II, and aldosterone. Regulated activity of tissue serine proteases, prostasin, and matriptase is necessary for normal placental development in mice. Prostasin activates the renal epithelial sodium channel. We hypothesized that preeclampsia is associated with low prostasin expression in placenta and spillover of prostasin into urine across the defect glomerular barrier. METHODS: In a cross-sectional study, 20 healthy pregnant women and 20 patients suspected of preeclampsia were included. Plasma and urine was obtained before delivery, and placental biopsies were taken immediately after delivery (mean gestational age: control 39 and preeclampsia 38 weeks). RESULTS: Patients with preeclampsia displayed lower levels of aldosterone in plasma and in spot urine normalized for creatinine (P = 0.0001). Prostasin, matriptase, hepatocyte growth factor activator inhibitor type 1 (HAI-1) and 2, and nexin-1 mRNA abundances were not different in placental tissue between groups. Prostasin mRNA in placenta correlated directly with nexin-1 and HAI-1 mRNA, but not with matriptase mRNA. Plasma prostasin and placental homogenate prostasin and nexin-1 protein levels did not differ between groups. Activated, arginine 614 (Arg614)-cleaved matriptase was not detectable in placentas. Western blotting showed significant elevated levels of prostasin in urine from preeclamptic patients that correlated with urine albumin. Placenta and plasma prostasin did not correlate to aldosterone or placental weight. CONCLUSION: Preeclampsia is not associated with altered prostasin in placenta or plasma at term, but with increased prostasin in urine. An impact of prostasin-matriptase on placental development is likely to be at the level of activity and not protein abundance.


Assuntos
Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/metabolismo , RNA Mensageiro/metabolismo , Serina Endopeptidases/metabolismo , Adulto , Aldosterona/sangue , Aldosterona/urina , Animais , Estudos de Casos e Controles , Estudos Transversais , Canais Epiteliais de Sódio , Feminino , Humanos , Glicoproteínas de Membrana/genética , Tamanho do Órgão , Gravidez , Proteínas Secretadas Inibidoras de Proteinases/genética , Serina Endopeptidases/genética , Serpina E2/genética , Serpina E2/metabolismo
9.
PLoS One ; 10(3): e0119255, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793771

RESUMO

Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds across the epithelial barrier. Low mRNA level of ABCB1 has previously been identified as an early event in colorectal carcinogenesis (Andersen et al., PLoS One. 2013 Aug 19;8(8):e72119). ABCC2 and ABCG2 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 106 adenoma cases (12 with severe dysplasia, 94 with mild-moderate dysplasia) and from 18 controls with normal endoscopy. We found significantly higher level of ABCC2 in adenomas with mild to moderate dysplasia and carcinoma tissue compared to the levels in unaffected tissue from the same individual (P = 0.037, P = 0.037, and P<0.0001) and in carcinoma and distant unaffected tissue from CRC cases compared to the level in the healthy individuals (P = 0.0046 and P = 0.036). Furthermore, ABCG2 mRNA levels were significantly lower in adenomas and carcinomas compared to the level in unaffected tissue from the same individuals and compared to tissue from healthy individuals (P<0.0001 for all). The level of ABCB2 in adjacent normal tissue was significantly higher than in tissue from healthy individuals (P = 0.011). In conclusion, this study found that ABCC2 and ABCG2 expression levels were altered already in mild/moderate dysplasia in carcinogenesis suggesting that these ABC transporters are involved in the early steps of carcinogenesis as previously reported for ABCB1. These results suggest that dysfunctional transport across the epithelial barrier may contribute to colorectal carcinogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adenoma/genética , Neoplasias Colorretais/genética , Expressão Gênica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Adenoma/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Neoplasias Colorretais/patologia , Feminino , Genótipo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
PLoS One ; 9(8): e105254, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25166592

RESUMO

BACKGROUND & AIMS: Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the PTGS2 gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation. METHODS: PTGS2 mRNA levels were determined in intestinal tissues from 85 intestinal adenoma cases, 115 CRC cases, and 17 healthy controls. The functional PTGS2 polymorphisms A-1195G (rs689466), G-765C (rs20417), T8473C (rs5275) were assessed in 200 CRC cases, 991 adenoma cases and 399 controls from the Norwegian KAM cohort. RESULTS: PTGS2 mRNA levels were higher in mild/moderate adenoma tissue compared to morphologically normal tissue from the same individual (P<0.0001) and (P<0.035) and compared to mucosa from healthy individuals (P<0.0039) and (P<0.0027), respectively. In CRC patients, PTGS2 mRNA levels were 8-9 times higher both in morphologically normal tissue and in cancer tissue, compared to healthy individuals (P<0.0001). PTGS2 A-1195G variant allele carriers were at reduced risk of CRC (odds ratio (OR) = 0.52, 95% confidence interval (95% CI): 0.28-0.99, P = 0.047). Homozygous carriers of the haplotype encompassing the A-1195G and G-765C wild type alleles and the T8473C variant allele (PTGS2 AGC) were at increased risk of CRC as compared to homozygous carriers of the PTGS2 AGT (A-1195G, G-765C, T8473C) haplotype (OR = 5.37, 95% CI: 1.40-20.5, P = 0.014). No association between the investigated polymorphisms and PTGS2 mRNA levels could be detected. CONCLUSION: High intestinal PTGS2 mRNA level is an early event in colorectal cancer development as it occurs already in mild/moderate dysplasia. PTGS2 polymorphisms that have been associated with altered PTGS2 mRNA levels/COX-2 activity in some studies, although not the present study, were associated with colorectal cancer risk. Thus, both PTGS2 polymorphisms and PTGS2 mRNA levels may provide information regarding CRC risk.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Ciclo-Oxigenase 2/genética , Mucosa Intestinal/metabolismo , Polimorfismo Genético , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/metabolismo , Adenoma/patologia , Idoso , Alelos , Carcinogênese/metabolismo , Carcinogênese/patologia , Estudos de Casos e Controles , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Feminino , Genótipo , Humanos , Intestinos/patologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Biol Chem ; 289(32): 22319-32, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24962579

RESUMO

The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Animais , Células CACO-2 , Ativação Enzimática , Inativação Gênica , Humanos , Mucosa Intestinal/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , RNA Interferente Pequeno/genética , Serina Endopeptidases/genética , Inibidores de Serina Proteinase/metabolismo
12.
PLoS One ; 8(10): e77146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204759

RESUMO

Matriptase is a member of the family of type II transmembrane serine proteases that is essential for development and maintenance of several epithelial tissues. Matriptase is synthesized as a single-chain zymogen precursor that is processed into a two-chain disulfide-linked form dependent on its own catalytic activity leading to the hypothesis that matriptase functions at the pinnacle of several protease induced signal cascades. Matriptase is usually found in either its zymogen form or in a complex with its cognate inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), whereas the active non-inhibited form has been difficult to detect. In this study, we have developed an assay to detect enzymatically active non-inhibitor-complexed matriptase by using a biotinylated peptide substrate-based chloromethyl ketone (CMK) inhibitor. Covalently CMK peptide-bound matriptase is detected by streptavidin pull-down and subsequent analysis by Western blotting. This study presents a novel assay for detection of enzymatically active matriptase in living human and murine cells. The assay can be applied to a variety of cell systems and species.


Assuntos
Clorometilcetonas de Aminoácidos/química , Ensaios Enzimáticos , Glicoproteínas de Membrana/química , Inibidores de Proteases/química , Proteínas Secretadas Inibidoras de Proteinases/química , Serina Endopeptidases/análise , Animais , Animais Recém-Nascidos , Biotina/química , Western Blotting , Células CACO-2 , Expressão Gênica , Humanos , Queratinócitos , Cinética , Glicoproteínas de Membrana/metabolismo , Camundongos , Pichia/enzimologia , Pichia/genética , Cultura Primária de Células , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Estreptavidina/química
13.
PLoS One ; 8(8): e72119, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977225

RESUMO

The ABCB1/MDR1 gene product ABCB1/P-glycoprotein is implicated in the development of colorectal cancer (CRC). NFKB1 encodes transcription factors regulating expression of a number of genes including ABCB1. We have previously found association between the ABCB1 C-rs3789243-T polymorphism and CRC risk and interactions between the ABCB1 C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407). ABCB1 and NFKB1 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild-moderate dysplasia) and from 18 healthy individuals, together with gene polymorphisms in ABCB1 and NFKB1. ABCB1 mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P<0.05 for both), morphologically normal tissues close to the tumour (P<0.05), morphologically normal tissue at a distance from the tumour (P<0.05) and CRC tissue (P<0.001). Furthermore, ABCB1 mRNA levels were lower in adenomas and carcinomas compared to morphologically normal tissue from the same individuals (P<0.01). The ABCB1 C-rs3789243-T and NFKB1 -94ins/del homozygous variant genotypes were associated with low ABCB1 mRNA levels in morphologically normal sigmoid tissue from adenoma cases (P<0.05 for both). NFKB1 mRNA levels were lower in both tumour and normal tissue from cancer patients (P<0.001) as compared to healthy individuals but we were unable to show association between NFKB1 -94ins/del genotype and NFKB1 mRNA levels. This study suggests that low ABCB1 mRNA levels are an early event in CRC development and that the two polymorphisms affect ABCB1 mRNA levels whereas low NFKB1 mRNA levels occur later in carcinogenesis. Low ABCB1 protein levels may promote colorectal carcinogenesis through increasing intracellular exposure to carcinogenic ABCB1 substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenoma/metabolismo , Carcinogênese/metabolismo , Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenoma/patologia , Carcinoma/patologia , Estudos de Casos e Controles , Colo/metabolismo , Neoplasias Colorretais/patologia , Feminino , Expressão Gênica , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
J Biol Chem ; 288(26): 19028-39, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23673661

RESUMO

Matriptase and prostasin are part of a cell surface proteolytic pathway critical for epithelial development and homeostasis. Here we have used a reconstituted cell-based system and transgenic mice to investigate the mechanistic interrelationship between the two proteases. We show that matriptase and prostasin form a reciprocal zymogen activation complex with unique features. Prostasin serves as a critical co-factor for matriptase activation. Unexpectedly, however, prostasin-induced matriptase activation requires neither prostasin zymogen conversion nor prostasin catalytic activity. Prostasin zymogen conversion to active prostasin is dependent on matriptase but does not require matriptase zymogen conversion. Consistent with these findings, wild type prostasin, activation cleavage site-mutated prostasin, and catalytically inactive prostasin all were biologically active in vivo when overexpressed in the epidermis of transgenic mice, giving rise to a severe skin phenotype. Our finding of non-enzymatic stimulation of matriptase activation by prostasin and activation of prostasin by the matriptase zymogen provides a tentative mechanistic explanation for several hitherto unaccounted for genetic and biochemical observations regarding these two membrane-anchored serine proteases and their downstream targets.


Assuntos
Ativação Enzimática , Precursores Enzimáticos/química , Serina Endopeptidases/química , Sítio Alostérico , Animais , Sítios de Ligação , Células CACO-2 , Catálise , Células Epiteliais/enzimologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Peptídeo Hidrolases/química , Fenótipo
15.
Exp Cell Res ; 319(6): 918-29, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23333561

RESUMO

Hepatocyte growth factor activator inhibitor-2 (HAI-2) is an inhibitor of many proteases in vitro, including the membrane-bound serine protease, matriptase. Studies of knock-out mice have shown that HAI-2 is essential for placental development only in mice expressing matriptase, suggesting that HAI-2 is important for regulation of matriptase. Previous studies have shown that recombinant expression of matriptase was unsuccessful unless co-expressed with another HAI, HAI-1. In the present study we show that when human matriptase is recombinantly expressed alone in the canine cell line MDCK, then human matriptase mRNA can be detected and the human matriptase ectodomain is shed to the media, suggesting that matriptase expressed alone is rapidly transported through the secretory pathway and shed. Whereas matriptase expressed together with HAI-1 or HAI-2 accumulates on the plasma membrane where it is activated, as judged by cleavage at Arg614 and increased peptidolytic activity of the cell extracts. Mutagenesis of Kunitz domain 1 but not Kunitz domain 2 abolished this function of HAI-2. HAI-2 seems to carry out its function intracellularly as this is where the vast majority of HAI-2 is located and since HAI-2 could not be detected on the basolateral plasma membrane where matriptase resides. However, minor amounts of HAI-2 not undergoing endocytosis could be detected on the apical plasma membrane. Our results suggest that Kunitz domain 1 of HAI-2 cause matriptase to accumulate in a membrane-bound form on the basolateral plasma membrane.


Assuntos
Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Animais , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Células CHO , Células CACO-2 , Membrana Celular/enzimologia , Membrana Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cricetinae , Meios de Cultura/metabolismo , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Cães , Eletroforese em Gel de Poliacrilamida , Endocitose , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Humanos , Proteínas Luminescentes/metabolismo , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Transfecção
16.
PLoS Genet ; 8(8): e1002937, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952456

RESUMO

Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.


Assuntos
Glicoproteínas de Membrana , Proteínas de Membrana , Serina Endopeptidases , Animais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Epistasia Genética , Feminino , Genes Letais , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Tubo Neural/embriologia , Tubo Neural/metabolismo , Placentação/genética , Gravidez , Proteínas Secretadas Inibidoras de Proteinases , Receptores Ativados por Proteinase/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/fisiologia
17.
Front Biosci (Elite Ed) ; 3(4): 1443-55, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622148

RESUMO

Sialyl-Tn is a simple mucin-type carbohydrate antigen aberrantly expressed in gastrointestinal adenocarcinomas and in the precursor lesion intestinal metaplasia. Sialyl-Tn tumour expression is an independent indicator of poor prognosis. We have previously shown in vitro that ST6GalNAc-I and ST6GalNAc-II sialyltransferases can synthesize sialyl-Tn. The aim of the present study was to establish whether ST6GalNAc-I is the major enzyme responsible for the expression of sialyl-Tn. We used a model of CHO-ldlD cells producing only MUC1-Tn glycoform and showed that ST6GalNAc-I is the key-enzyme leading to sialyl-Tn biosynthesis. We developed novel monoclonal antibodies specific for ST6GalNAc-I and evaluated its expression in gastrointestinal tissues. ST6GalNAc-I was detected in normal colon mucosa co-localized with O-acetylated sialyl-Tn. Expression was largely unaltered in colorectal adenocarcinomas. In contrast, we found that ST6GalNAc-I is weakly expressed in normal gastric mucosa, but over-expressed in intestinal metaplasia, co-localized with sialyl-Tn. In gastric carcinomas ST6GalNAc-I was also associated with sialyl-Tn, but with heterogeneous staining and partial co-localization. Our results showed ST6GalNAc-I as the major enzyme controlling the expression of cancer-associated sialyl-Tn antigen in gastrointestinal tissues.


Assuntos
Trato Gastrointestinal/imunologia , Sialiltransferases/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Antígenos Glicosídicos Associados a Tumores , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Primers do DNA , Camundongos , Camundongos Endogâmicos BALB C , Sialiltransferases/imunologia
18.
BMC Cancer ; 11: 65, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21310043

RESUMO

BACKGROUND: Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both in vivo and in vitro. We found in an in-silico search tight co-regulation between matriptase and claudin-7 expression. We have previously shown that the matriptase expression level decreases during colorectal carcinogenesis. In the present study we investigated whether claudin-7 expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue. METHODS: The mRNA level of claudin-7 (CLDN7) was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings. RESULTS: A 2.7-fold reduction in the claudin-7 mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p < 0.001). Reductions in the claudin-7 mRNA levels were also detected in mild/moderate dysplasia (p < 0.001), severe dysplasia (p < 0.01) and carcinomas (p < 0.01), compared to a control sample from the same individual. The decrease at mRNA level was confirmed at the protein level by immunohistochemical stainings. CONCLUSIONS: Our results show that the claudin-7 mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas.


Assuntos
Adenoma/genética , Carcinoma/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Proteínas de Membrana/genética , Adenoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Carcinoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Claudinas , Neoplasias Colorretais/metabolismo , Regulação para Baixo/genética , Detecção Precoce de Câncer , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos
19.
BMC Cancer ; 11: 14, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21226903

RESUMO

BACKGROUND: Several studies have shown that NDRG2 mRNA is down-regulated or undetectable in various human cancers and cancer cell-lines. Although the function of NDRG2 is currently unknown, high NDRG2 expression correlates with improved prognosis in high-grade gliomas, gastric cancer and hepatocellular carcinomas. Furthermore, in vitro studies have revealed that over-expression of NDRG2 in cell-lines causes a significant reduction in their growth. The aim of this study was to examine levels of NDRG2 mRNA in several human cancers, with focus on breast cancer, by examining affected and normal tissue. METHODS: By labelling a human Cancer Profiling Array with a radioactive probe against NDRG2, we evaluated the level of NDRG2 mRNA in 154 paired normal and tumor samples encompassing 19 different human cancers. Furthermore, we used quantitative real-time RT-PCR to quantify the levels of NDRG2 and MYC mRNA in thyroid gland cancer and breast cancer, using a distinct set of normal and tumor samples. RESULTS: From the Cancer Profiling Array, we saw that the level of NDRG2 mRNA was reduced by at least 2-fold in almost a third of the tumor samples, compared to the normal counterpart, and we observed a marked decreased level in colon, cervix, thyroid gland and testis. However, a Benjamini-Hochberg correction showed that none of the tissues showed a significant reduction in NDRG2 mRNA expression in tumor tissue compared to normal tissue. Using quantitative RT-PCR, we observed a significant reduction in the level of NDRG2 mRNA in a distinct set of tumor samples from both thyroid gland cancer (p = 0.02) and breast cancer (p = 0.004), compared with normal tissue. MYC mRNA was not significantly altered in breast cancer or in thyroid gland cancer, compared with normal tissue. In thyroid gland, no correlation was found between MYC and NDRG2 mRNA levels, but in breast tissue we found a weakly significant correlation with a positive r-value in both normal and tumor tissues, suggesting that MYC and NDRG2 mRNA are regulated together. CONCLUSION: Expression of NDRG2 mRNA is reduced in many different human cancers. Using quantitative RT-PCR, we have verified a reduction in thyroid cancer and shown, for the first time, that NDRG2 mRNA is statistically significantly down-regulated in breast cancer. Furthermore, our observations indicate that other tissues such as cervix and testis can have lower levels of NDRG2 mRNA in tumor tissue compared to normal tissue.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Biol Chem ; 286(7): 5793-802, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21148558

RESUMO

The matriptase-prostasin proteolytic cascade is essential for epidermal tight junction formation and terminal epidermal differentiation. This proteolytic pathway may also be operative in a variety of other epithelia, as both matriptase and prostasin are involved in tight junction formation in epithelial monolayers. However, in polarized epithelial cells matriptase is mainly located on the basolateral plasma membrane whereas prostasin is mainly located on the apical plasma membrane. To determine how matriptase and prostasin interact, we mapped the subcellular itinerary of matriptase and prostasin in polarized colonic epithelial cells. We show that zymogen matriptase is activated on the basolateral plasma membrane where it is able to cleave relevant substrates. After activation, matriptase forms a complex with the cognate matriptase inhibitor, hepatocyte growth factor activator inhibitor (HAI)-1 and is efficiently endocytosed. The majority of prostasin is located on the apical plasma membrane albeit a minor fraction of prostasin is present on the basolateral plasma membrane. Basolateral prostasin is endocytosed and transcytosed to the apical plasma membrane where a long retention time causes an accumulation of prostasin. Furthermore, we show that prostasin on the basolateral membrane is activated before it is transcytosed. This study shows that matriptase and prostasin co-localize for a brief period of time at the basolateral plasma membrane after which prostasin is transported to the apical membrane as an active protease. This study suggests a possible explanation for how matriptase or other basolateral serine proteases activate prostasin on its way to its apical destination.


Assuntos
Membrana Celular/enzimologia , Polaridade Celular/fisiologia , Colo/enzimologia , Células Epiteliais/enzimologia , Serina Endopeptidases/metabolismo , Células CACO-2 , Ativação Enzimática/fisiologia , Humanos , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...