Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(21): 14787-14814, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37902787

RESUMO

Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.


Assuntos
Sirtuína 2 , Tubulina (Proteína) , Desacetilase 6 de Histona , Sirtuína 2/metabolismo , Tubulina (Proteína)/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Acetilação
2.
ACS Pharmacol Transl Sci ; 5(2): 138-140, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35187421

RESUMO

The tubulin deacetylases Sirt2 and HDAC6 have been associated with the development of various diseases. Herein, we discuss recent approaches that enable cellular target engagement studies for these deacetylases and thus play a critical role in the evaluation of small molecule inhibitors of Sirt2 or HDAC6 as potential therapeutic agents.

3.
Chemistry ; 26(69): 16241-16245, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725698

RESUMO

New Thailandepsin B pseudo-natural products have been prepared. Our synthetic strategy offers the possibility to introduce varying warheads via late stage modification. Additionally, it gives access to the asymmetric branched allylic ester moiety of the natural product in a highly diastereoselective manner applying rhodium-catalyzed hydrooxycarbonylation. The newly developed pseudo-natural products are extremely potent and selective HDAC inhibitors. The non-proteinogenic amino acid d-norleucine was obtained enantioselectively by a recently developed method of rhodium-catalyzed hydroamination.

4.
Curr Opin Chem Biol ; 57: 8-16, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32146413

RESUMO

Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules and allow selective protein degradation by addressing the natural ubiquitin proteasome system. As this new strategy of chemically induced protein degradation can serve as a biological tool and provides new possibilities for drug discovery, it has been applied to a variety of targets including (nuclear) receptors, kinases, and epigenetic proteins. A lot of PROTACs have already been designed in the field of epigenetics, and their synthesis and characterization highly contributed to structural optimization and improved mechanistic understanding of these molecules. In this review, we will discuss and summarize recent advances in PROTAC discovery with focus on epigenetic targets.


Assuntos
Descoberta de Drogas/métodos , Epigênese Genética/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Animais , Epigenômica/métodos , Humanos , Modelos Moleculares , Terapia de Alvo Molecular/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...