Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
2.
ERJ Open Res ; 10(3)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770003

RESUMO

It is a challenge to keep abreast of all the clinical and scientific advances in the field of respiratory medicine. This article contains an overview of laboratory-based science, clinical trials and qualitative research that were presented during the 2023 European Respiratory Society International Congress within the sessions from the five groups of Assembly 1 (Respiratory Clinical Care and Physiology). Selected presentations are summarised from a wide range of topics: clinical problems, rehabilitation and chronic care, general practice and primary care, electronic/mobile health (e-health/m-health), clinical respiratory physiology, exercise and functional imaging.

3.
JMIR Form Res ; 8: e50035, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691395

RESUMO

BACKGROUND: Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. OBJECTIVE: The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back-worn inertial sensors. METHODS: Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back-worn inertial sensors. RESULTS: The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. CONCLUSIONS: Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. TRIAL REGISTRATION: ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2021-050785.

4.
Respir Physiol Neurobiol ; 326: 104278, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735425

RESUMO

OBJECTIVES: We investigated the effect of inspiratory muscle training (IMT) on inspiratory muscle strength, functional capacity and respiratory muscle kinematics during exercise in healthy older adults. METHODS: 24 adults were randomised into an IMT or SHAM-IMT group. Both groups performed 30 breaths, twice daily, for 8 weeks, at intensities of ∼50 % maximal inspiratory pressure (PImax; IMT) or <15 % PImax (SHAM-IMT). Measurements of PImax, breathing discomfort during a bout of IMT, six-minute walk distance, physical activity levels, and balance were assessed pre- and post-intervention. Respiratory muscle kinematics were assessed via optoelectronic plethysmography (OEP) during constant work rate cycling. RESULTS: PImax was significantly improved (by 20.0±11.9 cmH2O; p=0.001) in the IMT group only. Breathing discomfort ratings during IMT significantly decreased (from 3.5±0.9-1.7±0.8). Daily sedentary time was decreased (by 28.0±39.8 min; p=0.042), and reactive balance significantly improved (by 1.2±0.8; p<0.001) in the IMT group only. OEP measures showed a significantly greater contribution of the pulmonary and abdominal rib cage compartments to total tidal volume expansion post-IMT. CONCLUSIONS: IMT significantly improves inspiratory muscle strength and breathing discomfort in this population. IMT induces greater rib cage expansion and diaphragm descent during exercise, thereby suggesting a less restrictive effect on thoracic expansion and increased diaphragmatic power generation.

5.
Chron Respir Dis ; 21: 14799731241246802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590151

RESUMO

Measuring respiratory and locomotor muscle blood flow during exercise is pivotal for understanding the factors limiting exercise tolerance in health and disease. Traditional methods to measure muscle blood flow present limitations for exercise testing. This article reviews a method utilising near-infrared spectroscopy (NIRS) in combination with the light-absorbing tracer indocyanine green dye (ICG) to simultaneously assess respiratory and locomotor muscle blood flow during exercise in health and disease. NIRS provides high spatiotemporal resolution and can detect chromophore concentrations. Intravenously administered ICG binds to albumin and undergoes rapid metabolism, making it suitable for repeated measurements. NIRS-ICG allows calculation of local muscle blood flow based on the rate of ICG accumulation in the muscle over time. Studies presented in this review provide evidence of the technical and clinical validity of the NIRS-ICG method in quantifying respiratory and locomotor muscle blood flow. Over the past decade, use of this method during exercise has provided insights into respiratory and locomotor muscle blood flow competition theory and the effect of ergogenic aids and pharmacological agents on local muscle blood flow distribution in COPD. Originally, arterial blood sampling was required via a photodensitometer, though the method has subsequently been adapted to provide a local muscle blood flow index using venous cannulation. In summary, the significance of the NIRS-ICG method is that it provides a minimally invasive tool to simultaneously assess respiratory and locomotor muscle blood flow at rest and during exercise in health and disease to better appreciate the impact of ergogenic aids or pharmacological treatments.


Assuntos
Verde de Indocianina , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Verde de Indocianina/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Músculo Esquelético , Taxa Respiratória , Fluxo Sanguíneo Regional/fisiologia
6.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657998

RESUMO

BACKGROUND: Despite the importance of gait as a determinant of falls, disability and mortality in older people, understanding of gait impairment in COPD is limited. This study aimed to identify differences in gait characteristics during supervised walking tests between people with COPD and healthy controls. METHODS: We searched 11 electronic databases, supplemented by Google Scholar searches and manual collation of references, in November 2019 and updated the search in July 2021. Record screening and information extraction were performed independently by one reviewer and checked for accuracy by a second. Meta-analyses were performed in studies not considered at a high risk of bias. RESULTS: Searches yielded 21 085 unique records, of which 25 were included in the systematic review (including 1015 people with COPD and 2229 healthy controls). Gait speed was assessed in 17 studies (usual speed: 12; fast speed: three; both speeds: two), step length in nine, step duration in seven, cadence in six, and step width in five. Five studies were considered at a high risk of bias. Low-quality evidence indicated that people with COPD walk more slowly than healthy controls at their usual speed (mean difference (MD) -19 cm·s-1, 95% CI -28 to -11 cm·s-1) and at a fast speed (MD -30 cm·s-1, 95% CI -47 to -13 cm·s-1). Alterations in other gait characteristics were not statistically significant. CONCLUSION: Low-quality evidence shows that people with COPD walk more slowly than healthy controls, which could contribute to an increased falls risk. The evidence for alterations in spatial and temporal components of gait was inconclusive. Gait impairment appears to be an important but understudied area in COPD.


Assuntos
Marcha , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Humanos , Masculino , Idoso , Feminino , Estudos de Casos e Controles , Teste de Caminhada , Velocidade de Caminhada , Pessoa de Meia-Idade , Análise da Marcha , Pulmão/fisiopatologia
7.
ERJ Open Res ; 10(2)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444656

RESUMO

Introduction: The clinical validity of real-world walking cadence in people with COPD is unsettled. Our objective was to assess the levels, variability and association with clinically relevant COPD characteristics and outcomes of real-world walking cadence. Methods: We assessed walking cadence (steps per minute during walking bouts longer than 10 s) from 7 days' accelerometer data in 593 individuals with COPD from five European countries, and clinical and functional characteristics from validated questionnaires and standardised tests. Severe exacerbations during a 12-month follow-up were recorded from patient reports and medical registries. Results: Participants were mostly male (80%) and had mean±sd age of 68±8 years, post-bronchodilator forced expiratory volume in 1 s (FEV1) of 57±19% predicted and walked 6880±3926 steps·day-1. Mean walking cadence was 88±9 steps·min-1, followed a normal distribution and was highly stable within-person (intraclass correlation coefficient 0.92, 95% CI 0.90-0.93). After adjusting for age, sex, height and number of walking bouts in fractional polynomial or linear regressions, walking cadence was positively associated with FEV1, 6-min walk distance, physical activity (steps·day-1, time in moderate-to-vigorous physical activity, vector magnitude units, walking time, intensity during locomotion), physical activity experience and health-related quality of life and negatively associated with breathlessness and depression (all p<0.05). These associations remained after further adjustment for daily steps. In negative binomial regression adjusted for multiple confounders, walking cadence related to lower number of severe exacerbations during follow-up (incidence rate ratio 0.94 per step·min-1, 95% CI 0.91-0.99, p=0.009). Conclusions: Higher real-world walking cadence is associated with better COPD status and lower severe exacerbations risk, which makes it attractive as a future prognostic marker and clinical outcome.

8.
ERJ Open Res ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38410701

RESUMO

Objective: Upper-limb exercise is recommended for patients with COPD, albeit there are limited data concerning the optimal modality to implement. We compared interval (INT-EX) to continuous (CONT-EX) upper-limb exercise in terms of exercise tolerance, ventilatory and metabolic responses when both conditions were sustained at an equivalent work rate. Methods: 26 stable COPD patients undertook three upper-limb exercise sessions to initially establish peak work rate (PWR) via an incremental exercise test and subsequently two equivalent work rate tests to the limit tolerance in balanced order: 1) INT-EX consisting of 30-s work at 100% PWR interspersed with 30-s work at 40% of PWR; and 2) CONT-EX at 70% PWR. Results: 20 patients (76.9%) had longer tolerance during INT-EX, while six out of 26 (23.1%) exhibited longer tolerance during CONT-EX. The average endurance time was 434.1±184.7 and 315.7±128.7 s for INT-EX and CONT-EX, respectively. During INT-EX at isotime (i.e. when work completed was the same between INT-EX and CONT-EX), the majority of patients manifested lower oxygen uptake, minute ventilation, pulmonary hyperinflation, heart rate, symptoms and higher CO2 blood concentration. Patients with longer INT-EX had a lower comorbidity score (Cumulative Illness Rating Scale: 1.58±0.30 versus 1.88±0.29, p=0.0395) and better-preserved lung function (forced vital capacity 84.7±15.31% versus 67.67±20.56%, p=0.0367; forced expiratory volume in 1 s 57.15±14.59 versus 44.67±12.99% predicted, p=0.0725) compared to patients with longer CONT-EX. Conclusion: INT-EX is more sustainable than CONT-EX for the majority of COPD patients with moderate obstruction, leading to lower dynamic hyperinflation and symptoms at isotime. Further studies need to define the benefits of its application during pulmonary rehabilitation.

9.
Sci Rep ; 14(1): 1754, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243008

RESUMO

This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987.


Assuntos
Velocidade de Caminhada , Dispositivos Eletrônicos Vestíveis , Humanos , Idoso , Marcha , Caminhada , Projetos de Pesquisa
11.
Heart Fail Rev ; 29(1): 45-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37776404

RESUMO

Conduction system pacing is an alternative practice to conventional right ventricular apical pacing. It is a method that maintains physiologic ventricular activation, based on a correct pathophysiological basis, in which the pacing lead bypasses the lesion of the electrical fibers and the electrical impulse transmits through the intact adjacent conduction system. For this reason, it might be reasonably characterized by the term "electrical bypass" compared to the coronary artery bypass in revascularization therapy. In this review, reference is made to the sequence of events in which conventional right ventricular pacing may cause adverse outcomes. Furthermore, there is a reference to alternative strategies and pacing sites. Interest focuses on the modalities for which there are data from the literature, namely for the right ventricular (RV) septal pacing, the His bundle pacing (HBP), and the left bundle branch pacing (LBBP). A more extensive reference is about the HBP, for which there are the most updated data. We analyze the considerations that limit HBP-wide application in three axes, and we also present the data for the implantation and follow-up of these patients. The indications with their most important studies to date are then described in detail, not only in their undoubtedly positive findings but also in their weak aspects, because of which this pacing mode has not yet received a strong recommendation for implementation. Finally, there is a report on LBBP, focusing mainly on its points of differentiation from HBP.


Assuntos
Fascículo Atrioventricular , Estimulação Cardíaca Artificial , Humanos , Estimulação Cardíaca Artificial/métodos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Ventrículos do Coração/cirurgia , Resultado do Tratamento
12.
Eur Respir Rev ; 32(170)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37993126

RESUMO

BACKGROUND: Reduced mobility is a central feature of COPD. Assessment of mobility outcomes that can be measured digitally (digital mobility outcomes (DMOs)) in daily life such as gait speed and steps per day is increasingly possible using devices such as pedometers and accelerometers, but the predictive value of these measures remains unclear in relation to key outcomes such as hospital admission and survival. METHODS: We conducted a systematic review, nested within a larger scoping review by the MOBILISE-D consortium, addressing DMOs in a range of chronic conditions. Qualitative and quantitative analysis considering steps per day and gait speed and their association with clinical outcomes in COPD patients was performed. RESULTS: 21 studies (6076 participants) were included. Nine studies evaluated steps per day and 11 evaluated a measure reflecting gait speed in daily life. Negative associations were demonstrated between mortality risk and steps per day (per 1000 steps) (hazard ratio (HR) 0.81, 95% CI 0.75-0.88, p<0.001), gait speed (<0.80 m·s-1) (HR 3.55, 95% CI 1.72-7.36, p<0.001) and gait speed (per 1.0 m·s-1) (HR 7.55, 95% CI 1.11-51.3, p=0.04). Fewer steps per day (per 1000) and slow gait speed (<0.80 m·s-1) were also associated with increased healthcare utilisation (HR 0.80, 95% CI 0.72-0.88, p<0.001; OR 3.36, 95% CI 1.42-7.94, p=0.01, respectively). Available evidence was of low-moderate quality with few studies eligible for meta-analysis. CONCLUSION: Daily step count and gait speed are negatively associated with mortality risk and other important outcomes in people with COPD and therefore may have value as prognostic indicators in clinical trials, but the quantity and quality of evidence is limited. Larger studies with consistent methodologies are called for.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Velocidade de Caminhada , Humanos , Prognóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Hospitalização
13.
Front Neurol ; 14: 1247532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909030

RESUMO

Introduction: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of -0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, -0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.

15.
ERJ Open Res ; 9(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37753279

RESUMO

Background: Gait characteristics are important risk factors for falls, hospitalisations and mortality in older adults, but the impact of COPD on gait performance remains unclear. We aimed to identify differences in gait characteristics between adults with COPD and healthy age-matched controls during 1) laboratory tests that included complex movements and obstacles, 2) simulated daily-life activities (supervised) and 3) free-living daily-life activities (unsupervised). Methods: This case-control study used a multi-sensor wearable system (INDIP) to obtain seven gait characteristics for each walking bout performed by adults with mild-to-severe COPD (n=17; forced expiratory volume in 1 s 57±19% predicted) and controls (n=20) during laboratory tests, and during simulated and free-living daily-life activities. Gait characteristics were compared between adults with COPD and healthy controls for all walking bouts combined, and for shorter (≤30 s) and longer (>30 s) walking bouts separately. Results: Slower walking speed (-11 cm·s-1, 95% CI: -20 to -3) and lower cadence (-6.6 steps·min-1, 95% CI: -12.3 to -0.9) were recorded in adults with COPD compared to healthy controls during longer (>30 s) free-living walking bouts, but not during shorter (≤30 s) walking bouts in either laboratory or free-living settings. Double support duration and gait variability measures were generally comparable between the two groups. Conclusion: Gait impairment of adults with mild-to-severe COPD mainly manifests during relatively long walking bouts (>30 s) in free-living conditions. Future research should determine the underlying mechanism(s) of this impairment to facilitate the development of interventions that can improve free-living gait performance in adults with COPD.

16.
ERJ Open Res ; 9(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37753290

RESUMO

Rationale: The effect of pharmacological and non-pharmacological interventions on physical activity (PA) outcomes is not fully elucidated in patients with COPD. The objectives of the present study were to provide estimation of treatment effects of all available interventions on PA outcomes in patients with COPD and to provide recommendations regarding the future role of PA outcomes in pharmacological trials. Materials and methods: This review was conducted according to the Cochrane Handbook for Systematic Reviews of Interventions and reported in line with PRISMA. Records were identified through searches of 12 scientific databases; the most updated search was performed in January 2023. Results: 74 studies published from 2000 to 2021 were included, with a total of 8140 COPD patients. Forced expiratory volume in 1 s % predicted ranged between 31% and 74%, with a mean of 55%. Steps/day constituted the most frequently assessed PA outcome in interventional studies. Compared to usual care, PA behavioural modification interventions resulted in improvements in the mean (95% CI) steps/day when implemented alone (by 1035 (576-1493); p<0.00001) or alongside exercise training (by 679 (93-1266); p=0.02). Moreover, bronchodilator therapy yielded a favourable difference of 396 (125-668; p=0.004) steps/day, compared to placebo. Conclusions: PA behavioural modification and pharmacological interventions lead to significant improvements in steps/day, compared to control and placebo groups, respectively. Compared to bronchodilator therapy, PA behavioural modification interventions were associated with a 2-fold greater improvement in steps/day. Large-scale pharmacological studies are needed to establish an intervention-specific minimal clinically important difference for PA outcomes as well as their convergent validity to accelerate qualification as potential biomarkers and efficacy end-points for regulatory approval.

17.
ERJ Open Res ; 9(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701362

RESUMO

Introduction: Patients with COPD who exhibit elevated levels of anxiety and/or depression are typically less able to improve symptoms and physical activity levels following a programme of pulmonary rehabilitation (PR). The objective of the present study was to provide proof of concept that offering an intervention comprising cognitive behavioural therapy (CBT) alongside physical activity behavioural modification strategies (BPA) during PR is more effective in improving physical activity outcomes compared to PR and CBT alone. Methods: 32 patients with COPD (mean±sd forced expiratory volume in 1 s 42±14% predicted) were assigned 1:1 to receive PR+CBT+BPA or PR+CBT. BPA comprised motivational interviews, step-count monitoring, feedback using a pedometer and goal setting. Assessments included accelerometer-derived steps per day, movement intensity, 6-min walk distance (6MWD) and Hospital Anxiety and Depression Scale (HADS) scores. Results: The magnitude of improvement across physical activity outcomes was greater for the PR+CBT+BPA compared to the PR+CBT intervention (by 829 steps per day (p=0.029) and by 80±39 vector magnitude units (p=0.042), respectively). Compared to PR and CBT alone, the PR+CBT+BPA intervention induced greater clinically meaningful improvements in HADS anxiety scores (by -2 units, 95% CI -4-1 units) and 6MWD (by 33±20 m). Conclusions: Providing anxious and/or depressed patients with COPD with a combined intervention of CBT and BPA during PR presents more favourable improvements in physical activity outcome measures compared to CBT alone during PR.

18.
ERJ Open Res ; 9(4)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583963

RESUMO

It is a challenge to keep abreast of all the clinical and scientific advances in the field of respiratory medicine. This article contains an overview of the laboratory-based science, clinical trials and qualitative research that were presented during the 2022 European Respiratory Society International Congress within the sessions from the five groups of Assembly 1 (Respiratory Clinical Care and Physiology). Selected presentations are summarised from a wide range of topics: clinical problems, rehabilitation and chronic care, general practice and primary care, mobile/electronic health (m-health/e-health), clinical respiratory physiology, exercise and functional imaging.

19.
J Neuroeng Rehabil ; 20(1): 78, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316858

RESUMO

BACKGROUND: Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS: Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS: We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS: Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.


Assuntos
Tecnologia Digital , Fraturas Proximais do Fêmur , Humanos , Idoso , Marcha , Caminhada , Velocidade de Caminhada , Modalidades de Fisioterapia
20.
BMJ Open Respir Res ; 10(1)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37385736

RESUMO

INTRODUCTION: The potential additive benefits of rehabilitation beyond spontaneous recovery post-COVID-19 currently remain unknown. METHODS: In this prospective, interventional, non-randomised parallel assignment two-arm study, we investigated the effects of an 8-week rehabilitation programme (Rehab, n=25) added to usual care (UC) versus UC (n=27) on respiratory symptoms, fatigue, functional capacity, mental health and health-related quality of life in patients with COVID-19 pneumonia, 6-8 weeks post-hospital discharge. The rehabilitation programme included exercise, education, dietary and psychological support. Patients with chronic obstructive pulmonary disease, respiratory and heart failure were excluded from the study. RESULTS: At baseline, groups were not different in mean age (56 years), gender (53% female), intensive care unit admission (61%), intubation (39%), days of hospitalisation (25), number of symptoms (9) and number of comorbidities (1.4). Baseline evaluation was conducted at median (IQR) 76 (27) days after symptoms onset. Groups were not different regarding baseline evaluation outcomes. At 8 weeks, Rehab showed significantly greater improvement in COPD Assessment Test by a mean±SEM (95% CI) 7.07±1.36 (4.29-9.84), p <0.001 and all three fatigue questionnaires: Chalder-Likert: 5.65±1.27 (3.04-8.25), p <0.001; bimodal: 3.04±0.86 (1.28-4.79), p=0.001; Functional Assessment of Chronic Illness Therapy: 6.37±2.09 (2.08-10.65), p=0.005 and Fatigue Severity Scale: 1.36±0.433 (0.47-2.25), p=0.004. At 8 weeks rehab also showed significantly greater improvment in Short Physical Performance Battery: 1.13±0.33 (0.46-1.79), p=0.002; Hospital Anxiety and Depression Scale (HADS) Anxiety: 2.93±1.01 (0.67-5.18), p=0.013; Beck Depression Inventory: 7.81±3.07 (1.52-14.09), p=0.017; Montreal Cognitive Assessment: 2.83±0.63 (1.5-4.14), p <0.001; EuroQol (EQ-5D-5L) Utility Index: 0.21±0.05 (0.1-0.32), p=0.001 and Visual Analogue Scale: 6.57±3.21 (0.2-13.16), p=0.043. Both groups significantly improved 6-min walking distance by approximately 60 m and pulmonary function measures, whereas post-traumatic stress disorder measurement IES-R (Impact of Event Scale, Revised) and HADS-Depression score were not different between groups at 8 weeks. A 16% attrition rate was observed in the rehabilitation group exhibiting a threefold increase in training workload. There were no adverse effects reported during exercise training. DISCUSSION: These findings highlight the added value of rehabilitation post-COVID-19 to amplify the natural course of physical and mental recovery that otherwise would remain incomplete with UC.


Assuntos
COVID-19 , Saúde Mental , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Prospectivos , Qualidade de Vida , Hospitalização , Fadiga/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...