Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8340, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097573

RESUMO

Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.


Assuntos
Simulação de Dinâmica Molecular , Preparações Farmacêuticas
2.
Cancer Immunol Res ; 11(9): 1253-1265, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379366

RESUMO

Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.


Assuntos
Imunoterapia Adotiva , Melanoma , Camundongos , Animais , Humanos , Linfócitos T Citotóxicos , Engenharia Genética , Receptores de Antígenos de Linfócitos T/genética
3.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205431

RESUMO

Genetically engineered, cytotoxic, adoptive T cells localize to antigen positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with an orthogonal killing mechanism to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Here, we also expand the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with TCR-engineered T cells. We demonstrate that SEAKER cells localize specifically to tumors, and activate bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells are efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.

4.
Blood ; 141(16): 2003-2015, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36696633

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has shown success in the treatment of hematopoietic malignancies; however, relapse remains a significant issue. To overcome this, we engineered "Orexi" CAR T cells to locally secrete a high-affinity CD47 blocker, CV1, at the tumor and treated tumors in combination with an orthogonally targeted monoclonal antibody. Traditional CAR T cells plus the antibody had an additive effect in xenograft models, and this effect was potentiated by CAR T-cell local CV1 secretion. Furthermore, OrexiCAR-secreted CV1 reversed the immunosuppression of myelomonocytoid cells both in vitro and within the tumor microenvironment. Local secretion of the CD47 inhibitor bypasses the CD47 sink found on all cells in the body and may prevent systemic toxicities. This combination of CAR T-cell therapy, local CD47 blockade, and orthogonal antibody may be a combinatorial strategy to overcome the limitations of each monotherapy.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Recidiva Local de Neoplasia , Neoplasias/patologia , Linfócitos T , Imunoterapia Adotiva , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Microambiente Tumoral
5.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764348

RESUMO

The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.

6.
PLoS One ; 14(9): e0222211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31527873

RESUMO

Choline geranate (also described as Choline And GEranic acid, or CAGE) has been developed as a novel biocompatible antiseptic material capable of penetrating skin and aiding the transdermal delivery of co-administered antibiotics. The antibacterial properties of CAGE were analyzed against 24 and 72 hour old biofilms of 11 clinically isolated ESKAPE pathogens (defined as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter sp, respectively), including multidrug resistant (MDR) isolates. CAGE was observed to eradicate in vitro biofilms at concentrations as low as 3.56 mM (0.156% v:v) in as little as 2 hours, which represents both an improved potency and rate of biofilm eradication relative to that reported for most common standard-of-care topical antiseptics in current use. In vitro time-kill studies on 24 hour old Staphylococcus aureus biofilms indicate that CAGE exerts its antibacterial effect upon contact and a 0.1% v:v solution reduced biofilm viability by over three orders of magnitude (a 3log10 reduction) in 15 minutes. Furthermore, disruption of the protective layer of exopolymeric substances in mature biofilms of Staphylococcus aureus by CAGE (0.1% v:v) was observed in 120 minutes. Insight into the mechanism of action of CAGE was provided with molecular modeling studies alongside in vitro antibiofilm assays. The geranate ion and geranic acid components of CAGE are predicted to act in concert to integrate into bacterial membranes, affect membrane thinning and perturb membrane homeostasis. Taken together, our results show that CAGE demonstrates all properties required of an effective topical antiseptic and the data also provides insight into how its observed antibiofilm properties may manifest.


Assuntos
Anti-Infecciosos Locais/farmacologia , Colina/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos
7.
Obesity (Silver Spring) ; 18(6): 1270-2, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20019675

RESUMO

This study examined the feasibility of using Ecological Momentary Assessment (EMA) to examine important domains relevant to interregulatory health processes in overweight adolescent females in their natural environments. Participants were 20 overweight adolescent females engaged in a cognitive-behavioral and motivational interviewing intervention aimed at weight loss and improving mood (11-19 years old, 80% white, 15% African American, mean BMI = 39). During this EMA protocol, participants were asked to report their physical activity (PA), nutrition, mood, and sleep during 14 cellular phone calls over three extended weekends (Thursday to Monday). Simultaneously, participants wore an actigraph (armband and watch communicator) that provided instantaneous PA feedback (steps taken and kilocalories) and sleep parameters (duration and efficiency). EMA compliance rates for the armband and phone calls were 74.7 +/- 0.3% and 64.2 +/- 0.3%, respectively. Data from the armband and phone calls are presented to illustrate the depth of information acquired by utilizing this innovative methodology.


Assuntos
Emoções , Transtornos Mentais/diagnóstico , Obesidade/diagnóstico , Pediatria/métodos , Técnicas Psicológicas , Transtornos do Sono-Vigília/diagnóstico , Adolescente , Comportamento do Adolescente/fisiologia , Criança , Terapia Cognitivo-Comportamental , Técnicas de Diagnóstico Endócrino/instrumentação , Emoções/fisiologia , Estudos de Viabilidade , Feminino , Humanos , Transtornos Mentais/complicações , Obesidade/complicações , Obesidade/psicologia , Obesidade/terapia , Pediatria/instrumentação , Técnicas Psicológicas/instrumentação , Psicologia do Adolescente , Sono/fisiologia , Transtornos do Sono-Vigília/complicações , Redução de Peso/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...