Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 7: 1662, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895650

RESUMO

Sugar beet (Beta vulgaris ssp. vulgaris) is a biennial, sucrose-storing plant, which is mainly cultivated as a spring crop and harvested in the vegetative stage before winter. For increasing beet yield, over-winter cultivation would be advantageous. However, bolting is induced after winter and drastically reduces yield. Thus, post-winter bolting control is essential for winter beet cultivation. To identify genetic factors controlling bolting after winter, a F2 population was previously developed by crossing the sugar beet accessions BETA 1773 with reduced bolting tendency and 93161P with complete bolting after winter. For a mapping-by-sequencing analysis, pools of 26 bolting-resistant and 297 bolting F2 plants were used. Thereby, a single continuous homozygous region of 103 kb was co-localized to the previously published BR1 QTL for post-winter bolting resistance (Pfeiffer et al., 2014). The BR1 locus was narrowed down to 11 candidate genes from which a homolog of the Arabidopsis CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 73-I (CPSF73-I) was identified as the most promising candidate. A 2 bp deletion within the BETA 1773 allele of BvCPSF73-Ia results in a truncated protein. However, the null allele of BvCPSF73-Ia might partially be compensated by a second BvCPSF73-Ib gene. This gene is located 954 bp upstream of BvCPSF73-Ia and could be responsible for the incomplete penetrance of the post-winter bolting resistance allele of BETA 1773. This result is an important milestone for breeding winter beets with complete bolting resistance after winter.

2.
Front Plant Sci ; 5: 146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782884

RESUMO

Many plant species in temperate climate regions require vernalization over winter to initiate flowering. Flowering Locus C (FLC) and FLC-like genes are key regulators of vernalization requirement and growth habit in winter-annual and perennial Brassicaceae. In the biennial crop species Beta vulgaris ssp. vulgaris in the evolutionarily distant Caryophyllales clade of core eudicots growth habit and bolting time are controlled by the vernalization and photoperiod response gene BTC1 and the downstream BvFT1-BvFT2 module. B. vulgaris also contains a vernalization-responsive FLC homolog (BvFL1). Here, to further elucidate the regulation of vernalization response and growth habit in beet, we functionally characterized BvFL1 by RNAi and over-expression in transgenic plants. BvFL1 RNAi neither eliminated the requirement for vernalization of biennial beets nor had a major effect on bolting time after vernalization. Over-expression of BvFL1 resulted in a moderate late-bolting phenotype, with bolting after vernalization being delayed by approximately 1 week. By contrast, RNAi-induced down-regulation of the BvFT1-BvFT2 module led to a strong delay in bolting after vernalization by several weeks. The data demonstrate for the first time that an FLC homolog does not play a major role in the control of vernalization response in a dicot species outside the Brassicaceae.

3.
Curr Biol ; 22(12): 1095-101, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22608508

RESUMO

Life cycle adaptation to latitudinal and seasonal variation in photoperiod and temperature is a major determinant of evolutionary success in flowering plants. Whereas the life cycle of the dicotyledonous model species Arabidopsis thaliana is controlled by two epistatic genes, FLOWERING LOCUS C and FRIGIDA, three unrelated loci (VERNALIZATION) determine the spring and winter habits of monocotyledonous plants such as temperate cereals. In the core eudicot species Beta vulgaris, whose lineage diverged from that leading to Arabidopsis shortly after the monocot-dicot split 140 million years ago, the bolting locus B is a master switch distinguishing annuals from biennials. Here, we isolated B and show that the pseudo-response regulator gene BOLTING TIME CONTROL 1 (BvBTC1), through regulation of the FLOWERING LOCUS T genes, is absolutely necessary for flowering and mediates the response to both long days and vernalization. Our results suggest that domestication of beets involved the selection of a rare partial loss-of-function BvBTC1 allele that imparts reduced sensitivity to photoperiod that is restored by vernalization, thus conferring bienniality, and illustrate how evolutionary plasticity at a key regulatory point can enable new life cycle strategies.


Assuntos
Adaptação Biológica/fisiologia , Agricultura/métodos , Beta vulgaris/fisiologia , Evolução Biológica , Flores/fisiologia , Genes Reguladores/genética , Proteínas de Plantas/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Beta vulgaris/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Primers do DNA/genética , Flores/genética , Marcadores Genéticos/genética , Haplótipos/genética , Immunoblotting , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Fotoperíodo , Filogenia , Estações do Ano , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...