Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(7): 841-852.e7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38387459

RESUMO

The cortex controls cell shape. In mouse oocytes, the cortex thickens in an Arp2/3-complex-dependent manner, ensuring chromosome positioning and segregation. Surprisingly, we identify that mouse oocytes lacking the Arp2/3 complex undergo cortical actin remodeling upon division, followed by cortical contractions that are unprecedented in mammalian oocytes. Using genetics, imaging, and machine learning, we show that these contractions stir the cytoplasm, resulting in impaired organelle organization and activity. Oocyte capacity to avoid polyspermy is impacted, leading to a reduced female fertility. We could diminish contractions and rescue cytoplasmic anomalies. Similar contractions were observed in human oocytes collected as byproducts during IVF (in vitro fertilization) procedures. These contractions correlate with increased cytoplasmic motion, but not with defects in spindle assembly or aneuploidy in mice or humans. Our study highlights a multiscale effect connecting cortical F-actin, contractions, and cytoplasmic organization and affecting oocyte quality, with implications for female fertility.


Assuntos
Oócitos , Fuso Acromático , Humanos , Feminino , Animais , Camundongos , Citoplasma , Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Meiose , Mamíferos
2.
Nat Phys ; 20(2): 310-321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370025

RESUMO

Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole-a protuberance of the zygote's vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces.

3.
Biophys J ; 122(23): 4598-4613, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37936351

RESUMO

Collective cell migration, whereby cells adhere to form multi-cellular clusters that move as a single entity, play an important role in numerous biological processes, such as during development and cancer progression. Recent experimental work focused on migration of one-dimensional cellular clusters, confined to move along adhesive lanes, as a simple geometry in which to systematically study this complex system. One-dimensional migration also arises in the body when cells migrate along blood vessels, axonal projections, and narrow cavities between tissues. We explore here the modes of one-dimensional migration of cellular clusters ("trains") by implementing cell-cell interactions in a model of cell migration that contains a mechanism for spontaneous cell polarization. We go beyond simple phenomenological models of the cells as self-propelled particles by having the internal polarization of each cell depend on its interactions with the neighboring cells that directly affect the actin polymerization activity at the cell's leading edges. Both contact inhibition of locomotion and cryptic lamellipodia interactions between neighboring cells are introduced. We find that this model predicts multiple motility modes of the cell trains, which can have several different speeds for the same polarization pattern. Compared to experimental data, we find that Madin-Darby canine kidney cells are poised along the transition region where contact inhibition of locomotion and cryptic lamellipodia roughly balance each other, where collective migration speed is most sensitive to the values of the cell-cell interaction strength.


Assuntos
Comunicação Celular , Modelos Biológicos , Animais , Cães , Células Madin Darby de Rim Canino , Movimento Celular/fisiologia , Comunicação Celular/fisiologia , Pseudópodes
5.
Phys Rev E ; 106(3-1): 034603, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266896

RESUMO

Nonmotile active matter exhibits a wide range of nonequilibrium collective phenomena yet examples are crucially lacking in the literature. We present a microscopic model inspired by the bacteria Neisseria meningitidis in which diffusive agents feel intermittent attractive forces. Through a formal coarse-graining procedure, we show that this truly scalar model of active matter exhibits the time-reversal-symmetry breaking terms defining the Active Model B+ class. In particular, we confirm the presence of microphase separation by solving the kinetic equations numerically. We show that the switching rate controlling the interactions provides a regulation mechanism tuning the typical cluster size, e.g., in populations of bacteria interacting via type IV pili.

6.
Sci Adv ; 8(39): eabp8416, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179021

RESUMO

Cell migration is essential to living organisms and deregulated in cancer. Single cell's migration ranges from traction-dependent mesenchymal motility to contractility-driven propulsive amoeboid locomotion, but collective cell migration has only been described as a focal adhesion-dependent and traction-dependent process. Here, we show that cancer cell clusters, from patients and cell lines, migrate without focal adhesions when confined into nonadhesive microfabricated channels. Clusters coordinate and behave like giant super cells, mobilizing their actomyosin contractility at the rear to power their migration. This polarized cortex does not sustain persistent retrograde flows, of cells or actin, like in the other modes of migration but rather harnesses fluctuating cell deformations, or jiggling. Theoretical physical modeling shows this is sufficient to create a gradient of friction forces and trigger directed cluster motion. This collective amoeboid mode of migration could foster metastatic spread by enabling cells to cross a wide spectrum of environments.

7.
Nat Commun ; 13(1): 5070, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038550

RESUMO

Cells remodel their cytoplasm with force-generating cytoskeletal motors. Their activity generates random forces that stir the cytoplasm, agitating and displacing membrane-bound organelles like the nucleus in somatic and germ cells. These forces are transmitted inside the nucleus, yet their consequences on liquid-like biomolecular condensates residing in the nucleus remain unexplored. Here, we probe experimentally and computationally diverse nuclear condensates, that include nuclear speckles, Cajal bodies, and nucleoli, during cytoplasmic remodeling of female germ cells named oocytes. We discover that growing mammalian oocytes deploy cytoplasmic forces to timely impose multiscale reorganization of nuclear condensates for the success of meiotic divisions. These cytoplasmic forces accelerate nuclear condensate collision-coalescence and molecular kinetics within condensates. Disrupting the forces decelerates nuclear condensate reorganization on both scales, which correlates with compromised condensate-associated mRNA processing and hindered oocyte divisions that drive female fertility. We establish that cytoplasmic forces can reorganize nuclear condensates in an evolutionary conserved fashion in insects. Our work implies that cells evolved a mechanism, based on cytoplasmic force tuning, to functionally regulate a broad range of nuclear condensates across scales. This finding opens new perspectives when studying condensate-associated pathologies like cancer, neurodegeneration and viral infections.


Assuntos
Nucléolo Celular , Núcleo Celular , Animais , Corpos Enovelados , Citoplasma , Feminino , Mamíferos , Oócitos
8.
Nat Commun ; 13(1): 3842, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789161

RESUMO

Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.


Assuntos
Podossomos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimento Celular , Elasticidade , Podossomos/metabolismo
9.
Nat Mater ; 21(10): 1200-1210, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35637338

RESUMO

Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.


Assuntos
Colágeno , Matriz Extracelular , Movimento Celular , Fenômenos Mecânicos
10.
Soft Matter ; 18(19): 3793-3800, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35521993

RESUMO

Active gels made of cytoskeletal proteins are valuable materials with attractive non-equilibrium properties such as spatial self-organization and self-propulsion. At least four typical routes to spatial patterning have been reported to date in different types of cytoskeletal active gels: bending and buckling instabilities in extensile systems, and global and local contraction instabilities in contractile gels. Here we report the observation of these four instabilities in a single type of active gel and we show that they are controlled by two parameters: the concentrations of ATP and depletion agent. We demonstrate that as the ATP concentration decreases, the concentration of passive motors increases until the gel undergoes a gelation transition. At this point, buckling is selected against bending, while global contraction is favored over local ones. Our observations are coherent with a hydrodynamic model of a viscoelastic active gel where the filaments are crosslinked with a characteristic time that diverges as the ATP concentration decreases. Our work thus provides a unified view of spatial instabilities in cytoskeletal active matter.


Assuntos
Citoesqueleto , Hidrodinâmica , Trifosfato de Adenosina , Géis
11.
Nat Commun ; 12(1): 4118, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226542

RESUMO

Living cells actively migrate in their environment to perform key biological functions-from unicellular organisms looking for food to single cells such as fibroblasts, leukocytes or cancer cells that can shape, patrol or invade tissues. Cell migration results from complex intracellular processes that enable cell self-propulsion, and has been shown to also integrate various chemical or physical extracellular signals. While it is established that cells can modify their environment by depositing biochemical signals or mechanically remodelling the extracellular matrix, the impact of such self-induced environmental perturbations on cell trajectories at various scales remains unexplored. Here, we show that cells can retrieve their path: by confining motile cells on 1D and 2D micropatterned surfaces, we demonstrate that they leave long-lived physicochemical footprints along their way, which determine their future path. On this basis, we argue that cell trajectories belong to the general class of self-interacting random walks, and show that self-interactions can rule large scale exploration by inducing long-lived ageing, subdiffusion and anomalous first-passage statistics. Altogether, our joint experimental and theoretical approach points to a generic coupling between motile cells and their environment, which endows cells with a spatial memory of their path and can dramatically change their space exploration.


Assuntos
Movimento Celular/fisiologia , Memória Espacial/fisiologia , Células CACO-2 , Simulação por Computador , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Modelos Biológicos , RNA Interferente Pequeno
12.
Phys Rev Lett ; 126(10): 100602, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784156

RESUMO

Quantifying the efficiency of random target search strategies is a key question of random walk theory, with applications in various fields. If many results do exist for recurrent processes, for which the probability of eventually finding a target in infinite space-so called hitting probability-is one, much less is known in the opposite case of transient processes, for which the hitting probability is strictly less than one. Here, we determine the universality classes of the large distance behavior of the hitting probability for general d-dimensional transient jump processes, which we show are parametrized by a transience exponent that is explicitly given.

14.
Commun Chem ; 4(1): 157, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36697538

RESUMO

Chemical reactions generically require that particles come into contact. In practice, reaction is often imperfect and can necessitate multiple random encounters between reactants. In confined geometries, despite notable recent advances, there is to date no general analytical treatment of such imperfect transport-limited reaction kinetics. Here, we determine the kinetics of imperfect reactions in confining domains for any diffusive or anomalously diffusive Markovian transport process, and for different models of imperfect reactivity. We show that the full distribution of reaction times is obtained in the large confining volume limit from the knowledge of the mean reaction time only, which we determine explicitly. This distribution for imperfect reactions is found to be identical to that of perfect reactions upon an appropriate rescaling of parameters, which highlights the robustness of our results. Strikingly, this holds true even in the regime of low reactivity where the mean reaction time is independent of the transport process, and can lead to large fluctuations of the reaction time - even in simple reaction schemes. We illustrate our results for normal diffusion in domains of generic shape, and for anomalous diffusion in complex environments, where our predictions are confirmed by numerical simulations.

15.
Phys Rev Lett ; 125(23): 238005, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337208

RESUMO

Active materials, composed of internally driven particles, have properties that are qualitatively distinct from matter at thermal equilibrium. However, the most spectacular departures from equilibrium phase behavior are thought to be confined to systems with polar or nematic asymmetry. In this Letter, we show that such departures are also displayed by more symmetric phases such as hexatics if, in addition, the constituent particles have chiral asymmetry. We show that chiral active hexatics whose rotation rate does not depend on density have giant number fluctuations. If the rotation rate depends on density, the giant number fluctuations are suppressed due to a novel orientation-density sound mode with a linear dispersion which propagates even in the overdamped limit. However, we demonstrate that beyond a finite but large length scale, a chirality and activity-induced relevant nonlinearity invalidates the predictions of the linear theory and destroys the hexatic order. In addition, we show that activity modifies the interactions between defects in the active chiral hexatic phase, making them nonmutual. Finally, to demonstrate the generality of a chiral active hexatic phase we show that it results from the melting of chiral active crystals in finite systems.

17.
Nat Cell Biol ; 22(8): 1011-1023, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719553

RESUMO

Detection and conversion of mechanical forces into biochemical signals controls cell functions during physiological and pathological processes. Mechanosensing is based on protein deformations and reorganizations, yet the molecular mechanisms are still unclear. Using a cell-stretching device compatible with super-resolution microscopy and single-protein tracking, we explored the nanoscale deformations and reorganizations of individual proteins inside mechanosensitive structures. We achieved super-resolution microscopy after live stretching on intermediate filaments, microtubules and integrin adhesions. Simultaneous single-protein tracking and stretching showed that while integrins followed the elastic deformation of the substrate, actin filaments and talin also displayed lagged and transient inelastic responses associated with active acto-myosin remodelling and talin deformations. Capturing acute reorganizations of single molecules during stretching showed that force-dependent vinculin recruitment is delayed and depends on the maturation of integrin adhesions. Thus, cells respond to external forces by amplifying transiently and locally cytoskeleton displacements, enabling protein deformation and recruitment in mechanosensitive structures.


Assuntos
Actinas/fisiologia , Forma Celular , Animais , Fenômenos Biomecânicos , Células Cultivadas , Técnicas Citológicas , Humanos , Integrinas/metabolismo , Camundongos , Microscopia/métodos , Nanoestruturas , Dobramento de Proteína , Transporte Proteico , Talina/metabolismo , Vinculina/metabolismo
18.
Nature ; 582(7813): 582-585, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581372

RESUMO

Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular , Microambiente Celular , Linfócitos T/citologia , Actinas/metabolismo , Animais , Adesão Celular , Linhagem Celular , Humanos , Camundongos , Linfócitos T/metabolismo , Talina/deficiência
19.
Cell Syst ; 10(6): 535-542.e4, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32553185

RESUMO

Directed cell motion is essential in physiological and pathological processes such as morphogenesis, wound healing, and cancer spreading. Chemotaxis has often been proposed as the driving mechanism, even though evidence of long-range gradients is often lacking in vivo. By patterning adhesive regions in space, we control cell shape and the potential to move along one direction in another migration mode coined ratchetaxis. We report that focal contact distributions collectively dictate cell directionality, and bias is non-linearly increased by gap distance between adhesive regions. Focal contact dynamics on micro-patterns allow to integrate these phenomena in a model where each focal contact is translated into a force with known amplitude and direction, leading to quantitative predictions for cell motion in new conditions with their successful experimental tests. Altogether, our study shows how local and minute timescale dynamics of focal adhesions and their distribution lead to long-term cellular motion with simple geometric rules. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.


Assuntos
Movimento Celular/fisiologia , Adesões Focais/fisiologia , Humanos
20.
Proc Natl Acad Sci U S A ; 117(23): 12817-12825, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444491

RESUMO

Morphogenesis, tumor formation, and wound healing are regulated by tissue rigidity. Focal adhesion behavior is locally regulated by stiffness; however, how cells globally adapt, detect, and respond to rigidity remains unknown. Here, we studied the interplay between the rheological properties of the cytoskeleton and matrix rigidity. We seeded fibroblasts onto flexible microfabricated pillar arrays with varying stiffness and simultaneously measured the cytoskeleton organization, traction forces, and cell-rigidity responses at both the adhesion and cell scale. Cells adopted a rigidity-dependent phenotype whereby the actin cytoskeleton polarized on stiff substrates but not on soft. We further showed a crucial role of active and passive cross-linkers in rigidity-sensing responses. By reducing myosin II activity or knocking down α-actinin, we found that both promoted cell polarization on soft substrates, whereas α-actinin overexpression prevented polarization on stiff substrates. Atomic force microscopy indentation experiments showed that this polarization response correlated with cell stiffness, whereby cell stiffness decreased when active or passive cross-linking was reduced and softer cells polarized on softer matrices. Theoretical modeling of the actin network as an active gel suggests that adaptation to matrix rigidity is controlled by internal mechanical properties of the cytoskeleton and puts forward a universal scaling between nematic order of the actin cytoskeleton and the substrate-to-cell elastic modulus ratio. Altogether, our study demonstrates the implication of cell-scale mechanosensing through the internal stress within the actomyosin cytoskeleton and its coupling with local rigidity sensing at focal adhesions in the regulation of cell shape changes and polarity.


Assuntos
Citoesqueleto/metabolismo , Módulo de Elasticidade , Mecanotransdução Celular , Alicerces Teciduais/química , Actinina/metabolismo , Polaridade Celular , Reagentes de Ligações Cruzadas/química , Citoesqueleto/ultraestrutura , Fibroblastos/metabolismo , Humanos , Modelos Teóricos , Miosinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...