Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133602, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964681

RESUMO

Various strategies have extensively explored enhancing the physical and biological properties of chitosan and cellulose scaffolds for skin tissue engineering. This study presents a straightforward method involving the addition of glycerol into highly porous structures of two polysaccharide complexes: chitosan/carboxymethyl cellulose (Chit/CMC) and chitosan/oxidized cellulose (Chit/OC); during a one-step freeze-drying process. Adding glycerol, especially to Chit/CMC, significantly increased stability, prevented degradation, and improved mechanical strength by nearly 50 %. Importantly, after 21 days of incubation in enzymatic medium Chit/CMC scaffold has almost completely decomposed, while foams reinforced with glycerol exhibited only 40 % mass loss. It is possible due to differences in multivalent cations and polymer chain contraction, resulting in varied hydrogen bonding and, consequently, distinct physicochemical outcomes. Additionally, the scaffolds with glycerol improved the cellular activities resulting in over 40 % higher proliferation of fibroblast after 21 days of incubation. It was achieved by imparting water resistance to the highly absorbent material and aiding in achieving a balance between hydrophilic and hydrophobic properties. This study clearly indicates the possible elimination of additional crosslinkers and multiple fabrication steps that can reduce the cost of scaffold production for skin tissue engineering applications while tailoring mechanical strength and degradation.

2.
Leukemia ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877102

RESUMO

Several in vitro models have been developed to mimic chronic lymphocytic leukemia (CLL) proliferation in immune niches; however, they typically do not induce robust proliferation. We prepared a novel model based on mimicking T-cell signals in vitro and in patient-derived xenografts (PDXs). Six supportive cell lines were prepared by engineering HS5 stromal cells with stable expression of human CD40L, IL4, IL21, and their combinations. Co-culture with HS5 expressing CD40L and IL4 in combination led to mild CLL cell proliferation (median 7% at day 7), while the HS5 expressing CD40L, IL4, and IL21 led to unprecedented proliferation rate (median 44%). The co-cultures mimicked the gene expression fingerprint of lymph node CLL cells (MYC, NFκB, and E2F signatures) and revealed novel vulnerabilities in CLL-T-cell-induced proliferation. Drug testing in co-cultures revealed for the first time that pan-RAF inhibitors fully block CLL proliferation. The co-culture model can be downscaled to five microliter volume for large drug screening purposes or upscaled to CLL PDXs by HS5-CD40L-IL4 ± IL21 co-transplantation. Co-transplanting NSG mice with purified CLL cells and HS5-CD40L-IL4 or HS5-CD40L-IL4-IL21 cells on collagen-based scaffold led to 47% or 82% engraftment efficacy, respectively, with ~20% of PDXs being clonally related to CLL, potentially overcoming the need to co-transplant autologous T-cells in PDXs.

3.
Burns ; 50(6): 1586-1596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641499

RESUMO

BACKGROUND: The purpose of dermal substitutes is to mimic the basic properties of the extracellular matrix of human skin. The application of dermal substitutes to the defect reduces the formation of hypertrophic scars and improves the scar quality. This study aims to develop an original dermal substitute enriched with stable fibroblast growth factor 2 (FGF2-STAB®) and test it in an animal model. METHODS: Dermal substitutes based on collagen/chitosan scaffolds or collagen/chitosan scaffolds with nanofibrous layer were prepared and enriched with FGF2-STAB® at concentrations of 0, 0.1, 1.0, and 10.0 µg ‧ cm-2. The performance of these dermal substitutes was tested in vivo on artificially formed skin defects in female swine. The outcomes were evaluated using cutometry at 3 and 6 months. In addition, visual appearance was assessed based on photos of the scars at 1-month, 3-month and 6-month follow-ups using Yeong scale and Visual Analog Scale. RESULTS: The dermal substitute was fully integrated into all defects and all wounds healed successfully. FGF2-STAB®-enriched matrices yielded better results in cutometry compared to scaffolds without FGF2. Visual evaluation at 1, 3, and 6 months follow-ups detected no significant differences among groups. The FGF2-STAB® effectiveness in improving the elasticity of scar tissues was confirmed in the swine model. This effect was independently observed in the scaffolds with nanofibres as well as in the scaffolds without nanofibres. CONCLUSION: The formation of scars with the best elasticity was exhibited by addition 1.0 µg ‧ cm-2of FGF2-STAB® into the scaffolds, although it had no significant effect on visual appearance at longer follow-ups. This study creates the basis for further translational studies of the developed product and its progression into the clinical phase of the research.


Assuntos
Quitosana , Elasticidade , Fator 2 de Crescimento de Fibroblastos , Pele Artificial , Animais , Suínos , Feminino , Alicerces Teciduais , Colágeno , Viscosidade , Cicatriz Hipertrófica , Queimaduras , Cicatrização/efeitos dos fármacos , Nanofibras/uso terapêutico , Modelos Animais de Doenças , Pele
4.
Biomacromolecules ; 25(1): 67-76, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38135465

RESUMO

Fat grafting, a key regenerative medicine technique, often requires repeat procedures due to high-fat reabsorption and volume loss. Addressing this, a novel drug delivery system uniquely combines a thermosensitive, FDA-approved hydrogel (itaconic acid-modified PLGA-PEG-PLGA copolymer) with FGF2-STAB, a stable fibroblast growth factor 2 with a 21-day stability, far exceeding a few hours of wild-type FGF2's stability. Additionally, the growth factor was encapsulated in "green" liposomes prepared via the Mozafari method, ensuring pH protection. The system, characterized by first-order FGF2-STAB release, employs green chemistry for biocompatibility, bioactivity, and eco-friendliness. The liposomes, with diameters of 85.73 ± 3.85 nm and 68.6 ± 2.2% encapsulation efficiency, allowed controlled FGF2-STAB release from the hydrogel compared to the unencapsulated FGF2-STAB. Yet, the protein compromised the carrier's hydrolytic stability. Prior tests were conducted on model proteins human albumin (efficiency 80.8 ± 3.2%) and lysozyme (efficiency 81.0 ± 2.7%). This injectable thermosensitive system could advance reconstructive medicine and cosmetic procedures.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Lipossomos , Humanos , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Poliglactina 910/química , Portadores de Fármacos/química
5.
BMC Microbiol ; 23(1): 288, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803300

RESUMO

OBJECTIVES: Resistance to antibiotics among bacteria of clinical importance, including Staphylococcus aureus, is a serious problem worldwide and the search for alternatives is needed. Some metal complexes have antibacterial properties and when combined with antibiotics, they may increase bacterial sensitivity to antimicrobials. In this study, we synthesized the iron complex and tested it in combination with ampicillin (Fe16 + AMP) against S. aureus. METHODS: An iron complex (Fe16) was synthesized and characterized using spectroscopy methods. Confirmation of the synergistic effect between the iron complex (Fe16) and ampicillin (AMP) was performed using ζ-potential, infrared spectra and FICI index calculated from the minimum inhibitory concentration (MIC) from the checkerboard assay. Cytotoxic properties of combination Fe16 + AMP was evaluated on eukaryotic cell line. Impact of combination Fe16 + AMP on chosen genes of S. aureus were performed by Quantitative Real-Time PCR. RESULTS: The MIC of Fe16 + AMP was significantly lower than that of AMP and Fe16 alone. Furthermore, the infrared spectroscopy revealed the change in the ζ-potential of Fe16 + AMP. We demonstrated the ability of Fe16 + AMP to disrupt the bacterial membrane of S. aureus and that likely allowed for better absorption of AMP. In addition, the change in gene expression of bacterial efflux pumps at the sub-inhibitory concentration of AMP suggests an insufficient import of iron into the bacterial cell. At the same time, Fe16 + AMP did not have any cytotoxic effects on keratinocytes. CONCLUSIONS: Combined Fe16 + AMP therapy demonstrated significant synergistic and antimicrobial effects against S. aureus. This study supports the potential of combination therapy and further research.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Ampicilina/farmacologia , Sinergismo Farmacológico , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
6.
J Biomol NMR ; 77(5-6): 203-215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688760

RESUMO

Introducing the flow through the bioreactor has revolutionized in-cell NMR spectroscopy by prolonging the measurement time available to acquire spectral information about biomacromolecules in metabolically active cells. Bioreactor technology relies on immobilizer matrices, which secure cells in the active volume of the NMR coil and enable uniform perfusion of the growth medium, supplying fresh nutrients to the cells while removing toxic byproducts of their metabolism. The main drawbacks of commonly used matrices include the inability to recover intact cells post-measurement for additional analyses and/or requirements for specific operating temperatures. Here, we report on the development and characterization of a set of thermosensitive and nontoxic triblock copolymers based on poly(D,L-lactide)-b-poly(ethylene glycol)-b-poly(D,L-lactide) (PLA-PEG-PLA). Here, we show for the first time that these copolymers are suitable as immobilizer matrices for the acquisition of in-cell NMR spectra of nucleic acids and proteins over a commonly used sample temperature range of 15-40 °C and, importantly, allow recovery of cells after completion of in-cell NMR spectra acquisition. We compared the performances of currently used matrices in terms of cell viability (dye exclusion assays), cellular metabolism (1D 31P NMR), and quality of in-cell NMR spectra of two model biomacromolecules (hybrid double-stranded/i-motif DNA and ubiquitin). Our results demonstrate the suitability and advantages of PLA-PEG-PLA copolymers for application in bioreactor-assisted in-cell NMR.


Assuntos
Ácidos Nucleicos , Ressonância Magnética Nuclear Biomolecular , Polímeros/química , Espectroscopia de Ressonância Magnética , DNA , Reatores Biológicos
7.
J Nanobiotechnology ; 21(1): 80, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882867

RESUMO

Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC). Alternate BM is made from electrospun gelatin (Gel), polycaprolactone (PCL), and CaOC. Morphological and mechanical analyzes have shown that PDA significantly improved the elasticity and strength of collagen microfibrils, which favorably affected swelling capacity and porosity. PDA significantly supported and maintained metabolic activity, proliferation, and viability of the murine fibroblast cell lines. The in vivo experiment carried out in a domestic Large white pig model resulted in the expression of pro-inflammatory cytokines in the first 1-2 weeks, giving the idea that PDA and/or CaOC trigger the early stages of inflammation. Otherwise, in later stages, PDA caused a reduction in inflammation with the expression of the anti-inflammatory molecule IL10 and the transforming growth factor ß (TGFß1), which could support the formation of fibroblasts. Similarities in treatment with native porcine skin suggested that the bilayer can be used as an implant for full-thickness skin wounds and thus eliminate the use of skin grafts.


Assuntos
Nanofibras , Suínos , Animais , Camundongos , Compostos de Ósmio , Inflamação
8.
Anal Chim Acta ; 1241: 340793, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36657868

RESUMO

Polymeric foams tailor-made of polyvinylpyrrolidone (PVP) and carboxymethylcellulose/oxidized 6-carboxycellulose (CMC07/OC) composite were proposed as suitable sorbents for the collection and analysis of dried blood spots (DBSs). The PVP and CMC07/OC foams were easy to prepare, enabled collection of minute volumes of capillary blood, and blood drying at ambient temperature. The resulting foams were prepared as small porous discs with uniform dimensions (approx. 6 × 3 mm) and were fully soluble in aqueous solutions. The DBSs were formed in standard capillary electrophoresis (CE) vials fitted with the soluble foam discs and enabled the direct in-vial DBS processing and at-line analysis by CE. The DBSs were pretreated with a simple process, which involved a complete dissolution of the foam disc in an acidic solution and a simultaneous hollow fiber liquid-phase microextraction (HF-LPME) in one step. The complete solubility of the foam disc with the DBS served for a quantitative transfer of all blood components into the eluate and a nearly exhaustive HF-LPME of target analytes, whereas the blood matrix and the polymeric foam components were efficiently retained by the organic solvent impregnated in the walls of the HF. The suitability of the PVP and CMC07/OC foams for the collection and the direct analysis of DBSs was demonstrated by the HF-LPME/CE determination of model acidic drugs (warfarin, ibuprofen, naproxen, ketoprofen, and diclofenac) at therapeutically relevant concentrations. Repeatability of the analytical method was better than 8.1% (RSD), extraction recoveries ranged from 70 to 99% (for PVP foam), calibration curves were linear over two orders of magnitude (R2 higher than 0.9991), and limits of detection were less than 44 µg/L (for concentrations in undiluted capillary blood). The soluble polymeric foams exhibited non-significant variations in analyte concentrations for DBSs prepared from blood samples with different hematocrit levels and for aged DBSs (less than 9.2%), moreover, they outperformed standard DBS sampling devices in terms of sample pretreatment time and extraction recovery.


Assuntos
Cetoprofeno , Naproxeno , Ibuprofeno , Solventes , Eletroforese Capilar/métodos
9.
Sci Rep ; 12(1): 14497, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008433

RESUMO

Biomimicking native tissues and organs require the development of advanced hydrogels. The patterning of hydrogel surfaces may enhance the cellular functionality and therapeutic efficacy of implants. For example, nanopatterning of the intraocular lens (IOL) surface can suppress the upregulation of cytoskeleton proteins (actin and actinin) within the cells in contact with the IOL surface and, hence, prevent secondary cataracts causing blurry or opaque vision. Here we introduce a fast and efficient method for fabricating arrays consisting of millions of individual nanostructures on the hydrogel surface. In particular, we have prepared the randomly distributed nanopillars on poly(2-hydroxyethyl methacrylate) hydrogel using replica molding and show that the number, shape, and arrangement of nanostructures are fully adjustable. Characterization by atomic force microscopy revealed that all nanopillars were of similar shape, narrow size distribution, and without significant defects. In imprint lithography, choosing the appropriate hydrogel composition is critical. As hydrogels with imprinted nanostructures mimic the natural cell environment, they can find applications in fundamental cell biology research, e.g., they can tune cell attachment and inhibit or promote cell clustering by a specific arrangement of protrusive nanostructures on the hydrogel surface.


Assuntos
Nanoestruturas , Poli-Hidroxietil Metacrilato , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogéis/química , Microscopia de Força Atômica , Nanoestruturas/química , Poli-Hidroxietil Metacrilato/química
10.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955380

RESUMO

In this work, the biological properties of three-dimensional scaffolds based on a blend of nanohydroxyapatite (nHA), silk fibroin (SF), and chitosan (CTS), were prepared using a lyophilization technique with various weight ratios: 10:45:45, 15:15:70, 15:70:15, 20:40:40, 40:30:30, and 70:15:15 nHA:SF:CTS, respectively. The basic 3D scaffolds were obtained from 5% (w/w) chitosan and 5% silk fibroin solutions and then nHA was added. The morphology and physicochemical properties of scaffolds were studied and compared. A biological test was performed to study the growth and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). It was found that the addition of chitosan increases the resistance properties and extends the degradation time of materials. In vitro studies with human mesenchymal stem cells found a high degree of biotolerance for the materials produced, especially for the 20:40:40 and 15:70:15 (nHa:SF:CTS) ratios. The presence of silk fibroin and the elongated shape of the pores positively influenced the differentiation of cells into osteogenic cells. By taking advantage of the differentiation/proliferation cues offered by individual components, the composites based on the nanohydroxyapatite, silk fibroin, and chitosan scaffold may be suitable for bone tissue engineering, and possibly offer an alternative to the widespread use of collagen materials.

11.
Carbohydr Polym ; 294: 119792, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868761

RESUMO

The study investigates the use of fiber carriers, based on biopolymeric gums as potential candidates for cosmetic and dermatological applications, in particular for skin regeneration. Gum arabic (GA), xanthan gum (XA), and gum karaya (GK) were used as the main gum materials for the fibers, which were prepared by centrifugal spinning from an aqueous solution. These solutions of different mass gum ratios were blended with poly (ethylene oxide) (PEO) for better spinnability. Finally, vitamins E and C were added to selected solutions of gums. The resulting fibers were extensively investigated. The morphology and structure of all fibers were investigated by scanning electron microscopy and Fourier transformed infrared spectroscopy. Most importantly, they were characterized by the release of vitamin E loaded in the fibers using UV-VIS spectroscopy. The presentation will show that the newly prepared fibers from GA and PEO represent a very promising material for cosmetic and dermatologic applications.


Assuntos
Goma de Karaya , Vitaminas , Goma Arábica/química , Goma de Karaya/química , Polietilenoglicóis , Regeneração , Pele
12.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887016

RESUMO

The utilization of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) with entrapped fish oil (FO) loaded in collagen-based scaffolds for cutaneous wound healing using a porcine model is unique for the present study. Full-depth cutaneous excisions (5 × 5 cm) on the pig dorsa were treated with pure collagen scaffold (control, C), empty PLGA NPs (NP), FO, mupirocin (MUP), PLGA NPs with entrapped FO (NP/FO) and PLGA NPs with entrapped MUP (NP/MUP). The following markers were evaluated on days 0, 3, 7, 14 and 21 post-excision: collagen, hydroxyproline (HP), angiogenesis and expressions of the COX2, EGF, COL1A1, COL1A3, TGFB1, VEGFA, CCL5 and CCR5 genes. The hypothesis that NP/FO treatment is superior to FO alone and that it is comparable to NP/MUP was tested. NP/FO treatment increased HP in comparison with both FO alone and NP/MUP (day 14) but decreased (p < 0.05) angiogenesis in comparison with FO alone (day 3). NP/FO increased (p < 0.05) the expression of the CCR5 gene (day 3) and tended (p > 0.05) to increase the expressions of the EGF (day 7, day 14), TGFB1 (day 21) and CCL5 (day 7, day 21) genes as compared with NP/MUP. NP/FO can be suggested as a suitable alternative to NP/MUP in cutaneous wound treatment.


Assuntos
Mupirocina , Nanopartículas , Animais , Colágeno/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Óleos de Peixe/farmacologia , Mupirocina/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Suínos , Cicatrização
13.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457055

RESUMO

Collagen I-based foams were modified with calcined or noncalcined hydroxyapatite or calcium phosphates with various particle sizes and pores to monitor their effect on cell interactions. The resulting scaffolds thus differed in grain size, changing from nanoscale to microscopic, and possessed diverse morphological characteristics and resorbability. The materials' biological action was shown on human bone marrow MSCs. Scaffold morphology was identified by SEM. Using viability test, qPCR, and immunohistochemical staining, we evaluated the biological activity of all of the materials. This study revealed that the most suitable scaffold composition for osteogenesis induction is collagen I foam with calcined hydroxyapatite with a pore size of 360 ± 130 µm and mean particle size of 0.130 µm. The expression of osteogenic markers RunX2 and ColI mRNA was promoted, and a strong synthesis of extracellular protein osteocalcin was observed. ColI/calcined HAP scaffold showed significant osteogenic potential, and can be easily manipulated and tailored to the defect size, which gives it great potential for bone tissue engineering applications.


Assuntos
Durapatita , Osteogênese , Diferenciação Celular , Células Cultivadas , Colágeno Tipo I/genética , Durapatita/química , Durapatita/farmacologia , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
Comput Biol Med ; 145: 105438, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364309

RESUMO

Spinal fusion is a surgical procedure used to join two or more vertebrae to prevent movement between them. This surgical procedure is considered in patients suffering from a wide range of degenerative spinal diseases or vertebral fractures. The success rate of spinal fusion is frequently evaluated subjectively using X-ray computed tomography. The pig was chosen as an animal model for spinal fusion, since its spinal structure is similar to the human spine. Our paper presents an automatic approach for pig's spinal fusion evaluation in 3D. The proposed approach is based on the determination of the vertebral fused area, which reflects the fusion quality. The approach was applied and tested on microCT (µCT) data of fused porcine vertebrae ex-vivo. In our study, three types of implants were used to perform spinal fusion: the iliac crest bone graft used as the gold standard, and two types of novel scaffold implants based on the polymer/ceramic porous foam involving either growth factors or polyphosphates. The evaluation worked automatically for all three types of used implants, and the fusion quality was determined quantitatively. The calculation is based on the detection of the fused area and area of facies intervertebralis, so the percentual representation of the vertebral joint can be determined. Since this approach is versatile and is described in detail as a guide for image processing the data of vertebrae fusion, this methodology has the potential to establish a standard approach for evaluating the fusion quality in ex-vivo samples that can be tested on clinical data.


Assuntos
Doenças da Coluna Vertebral , Fusão Vertebral , Animais , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Região Lombossacral , Suínos , Microtomografia por Raio-X , Raios X
15.
Biomedicines ; 9(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202232

RESUMO

Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.

16.
Polymers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203144

RESUMO

Dermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N3) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.%), into plasma-derived fibrin hydrogels. Our results showed a decrease in gelation time and contraction, both in the absence and presence of the encapsulated human primary fibroblasts (hFBs), higher mechanical properties and increase in elasticity when SKSs content is equal or higher than 3%. However, hFBs proliferation showed an improvement when the lowest SKS content (1 wt.%) was used but started decreasing when increasing SKS concentration at day 14 with respect to the plasma control. Proliferation of human primary keratinocytes (hKCs) seeded on top of the hybrid-plasma hydrogels containing 1 and 3% of SKS showed no differences to plasma control and an increase in hKCs proliferation was observed for hybrid-plasma hydrogels containing 5 wt.% of SKS. These promising results showed the need to achieve a balance between the reduced contraction, the better mechanical properties and biological properties and indicate the potential of using this type of hydrogel as a testing platform for pharmaceutical products and cosmetics, and future work will elucidate their potential.

17.
Biomedicines ; 9(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067330

RESUMO

Wound healing is a process regulated by a complex interaction of multiple growth factors including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform FGF2 retaining full biological activity even after twenty days at 37 °C. Crosslinked freeze-dried 3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein named FGF2-STAB® were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31 fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays indicated the positive effect of FGF2-STAB® already at very low concentrations (0.01 µg/mL). The angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds. Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® protein. Moreover, these sponges could be used as scaffolds for growing cells for dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.

18.
J Nanobiotechnology ; 19(1): 103, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849566

RESUMO

In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Colágeno/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Selênio/farmacologia , Alicerces Teciduais , Animais , Antibacterianos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Porosidade , Selênio/química , Engenharia Tecidual/métodos , Cicatrização
19.
Materials (Basel) ; 14(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466418

RESUMO

This work shows the synthesis of a polyvinylpyrrolidone (PVP) hydrogel by heat-activated polymerization and explores the production of hydrogels with an open porous network by lyophilisation to allow the three-dimensional culture of human oral mucosa stem cells (hOMSCs). The swollen hydrogel showed a storage modulus similar to oral mucosa and elastic solid rheological behaviour without sol transition. A comprehensive characterization of porosity by scanning electron microscopy, mercury intrusion porosimetry and nano-computed tomography (with spatial resolution below 1 µm) showed that lyophilisation resulted in the heterogeneous incorporation of closed oval-like pores in the hydrogel with broad size distribution (5 to 180 µm, d50 = 65 µm). Human oral mucosa biopsies were used to isolate hOMSCs, expressing typical markers of mesenchymal stem cells in more than 95% of the cell population. Direct contact cytotoxicity assay demonstrated that PVP hydrogel have no negative effect on cell metabolic activity, allowing the culture of hOMSCs with normal fusiform morphology. Pore connectivity should be improved in future to allow cell growth in the bulk of the PVP hydrogel.

20.
J Mech Behav Biomed Mater ; 115: 104249, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340777

RESUMO

AIMS: The aim of this study was to answer the question whether our newly developed injectable biodegradable "self-setting" polymer-composite as a bone adhesive is a good "bone-glue" candidate to efficiently fix comminuted fractures of pig femoral bones used as an ex-vivo experimental model. METHODS: Mechanical properties of adhesive prepared from α-tricalcium phosphate (TCP) powder and thermogelling copolymer were optimized by selecting the appropriate composition with adhesion enhancers based on dopamine and sodium iodinate. Setting time and injectability were controlled by rheology. Ex-vivo experiments of fixed pig bones were provided in terms of either the three-point bending test of bending wedge type fractured pig femurs (with LCP) or the axial compression test of 45° oblique fractured femurs (without LCP) in physiological saline solution at 37 °C. Fractured bones treated with optimized adhesive before and after bending tests were imaged by X-ray microtomography (µCT). RESULTS: Based on the rheological measurement, the adhesive modified with both dopamine and sodium iodinate exhibited optimal thixotropic properties required for injection via thin 22 G needle. This optimal adhesive composition showed an 8 min lag phase (processing time) followed by fast increase in storage modulus at 37 °C up to 1 GPa within 110 min. Self-setting of dopamine/iodinate modified adhesive was completed in 48 h exhibiting the maximum strength at compression of 7.98 MPa ± 1.39 MPa. Whereas unmodified adhesive failed in glue-to-bone adhesion, dopamine and dopamine/iodinate modified adhesive used for 45° oblique fracture fixation showed good and similar strength at compression (3.05 and 2.79 MPa, respectively). However, significantly higher elasticity of about 250% exhibited adhesive with iodinate enhancer. Moreover, mechanical properties of B2 fractures fixed with both LCP and dopamine/iodinate adhesive were approaching closely to the properties of original bone. Excellent adhesion between the adhesive and the bone fragments was proved by µCT. CONCLUSION: The polymer-composite bone adhesive modified with dopamine/iodinate exhibited very good fixation ability of femoral artificial comminuted fractures in an experimental model.


Assuntos
Cimentos Ósseos , Fraturas do Fêmur , Animais , Fenômenos Biomecânicos , Placas Ósseas , Diáfises , Fraturas do Fêmur/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Fixação de Fratura , Fixação Interna de Fraturas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...