Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38066331

RESUMO

BACKGROUND: Space weather has been associated with increased risk of cardiovascular diseases in space and flight crew. However, limited research has focused on the ground population, particularly among the elderly who are vulnerable to aging-related diseases. OBJECTIVE: We evaluated the association between space weather alterations and biological aging using leukocyte telomere length as a biomarker in healthy elderly men. METHODS: We used data from the Normative Aging Study, a longitudinal cohort of healthy elderly men in Massachusetts, USA. Leukocyte telomere length and health information were measured at in-person examinations approximately every three years, contributing to a total of 1,850 visits from 791 participants. Regional space weather information was collected daily, including cosmic ray-induced ionization, neutrons, sunspot number, interplanetary magnetic field, and Kp-index as our exposure of interest. We used mixed-effects models with a random intercept per individual to evaluate the associations between annual averages of space weather indicators and relative telomere length while accounting for participant demographics, environmental parameters, and secular trends. RESULTS: The mean age at baseline was 72.36 years. A one-year increment in age is associated with a 1.21% reduction in leukocyte telomere length. In the fully adjusted model accounting for individual and environmental factors, an interquartile range (IQR) increase of annual cosmic ray induced ionization (110.0 ion pairs cm-3 sec-1) was associated with a 17.64% (95%CI: -27.73%, -7.55%) decrease in leukocyte telomere length, equivalent to 15-years age increment. Solar and geomagnetic activities were associated with increased leukocyte telomere length, but the association became absent after adjusting for cosmic ray indicators. IMPACT: Galactic cosmic rays may accelerate the aging process in populations on the Earth, despite the protection by the Earth's atmosphere and magnetic field. This research enhances our understanding of how changes in space weather can impact health, highlights potential risks from space to Earth's inhabitants, and helps inform health strategies for vulnerable populations.

2.
Transl Med Aging ; 7: 66-74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576443

RESUMO

Psychological stress remains an important risk factor for morbidity and mortality throughout the life course. However, there have been counterintuitive findings reported in previous studies of older persons that examine the relationships of perceived psychological stress with DNA methylation-based markers of aging, which also serve as predictors of morbidity and mortality (epigenetic age/clocks). We aimed to replicate and expand findings from existing work by examining relationships of self-reported stress with nine epigenetic clocks: Hannum, Horvath, Intrinsic, Extrinsic, SkinBloodClock, PhenoAge, GrimAge, DNAm Telomere Length, and Pace of Aging. We analyzed data from 607 male participants (mean age 73.2 years) of the VA Normative Aging Study with one to two study visits from 1999 to 2007 (observations = 956). Stress was assessed via the 14-item Perceived Stress Scale (PSS). Epigenetic age was calculated from DNA methylation measured in leukocytes with the HumanMethylation450 BeadChip. In linear mixed effects models adjusted for demographic/lifestyle/health factors, a standard deviation (sd) increase in PSS was associated with Horvath (ß = -0.35-years, 95%CI: -0.61, -0.09, P=0.008) and Intrinsic (ß = -0.40-years, 95%CI: -0.67, -0.13, P=0.004) epigenetic age deceleration. However, in models limited to participants with the highest levels of stress (≥ 75th-percentile), Horvath (ß = 2.29-years, 95%CI: 0.16, 4.41, P=0.04) and Intrinsic (ß = 2.06-years, 95%CI: -0.17, 4.28, P=0.07) age acceleration associations were observed. Our results reinforce the complexity of psychological stress and epigenetic aging relationships and lay a foundation for future studies that explore longitudinal relationships with other adult stress metrics and factors that can influence stress such as resilience measures.

3.
Metabolites ; 13(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37512558

RESUMO

Traditional approaches to understanding metabolomics in mental illness have focused on investigating a single disorder or comparisons between diagnoses, but a growing body of evidence suggests substantial mechanistic overlap in mental disorders that could be reflected by the metabolome. In this study, we investigated associations between global plasma metabolites and abnormal scores on the depression, anxiety, and phobic anxiety subscales of the Brief Symptom Inventory (BSI) among 405 older males who participated in the Normative Aging Study (NAS). Our analysis revealed overlapping and distinct metabolites associated with each mental health dimension subscale and four metabolites belonging to xenobiotic, carbohydrate, and amino acid classes that were consistently associated across all three symptom dimension subscales. Furthermore, three of these four metabolites demonstrated a higher degree of alteration in men who reported poor scores in all three dimensions compared to men with poor scores in only one, suggesting the potential for shared underlying biology but a differing degree of perturbation when depression and anxiety symptoms co-occur. Our findings implicate pathways of interest relevant to the overlap of mental health conditions in aging veterans and could represent clinically translatable targets underlying poor mental health in this high-risk population.

4.
Environ Sci Technol ; 57(22): 8236-8244, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224396

RESUMO

Contemporary environmental health sciences draw on large-scale longitudinal studies to understand the impact of environmental exposures and behavior factors on the risk of disease and identify potential underlying mechanisms. In such studies, cohorts of individuals are assembled and followed up over time. Each cohort generates hundreds of publications, which are typically neither coherently organized nor summarized, hence limiting knowledge-driven dissemination. Hence, we propose a Cohort Network, a multilayer knowledge graph approach to extract exposures, outcomes, and their connections. We applied the Cohort Network on 121 peer-reviewed papers published over the past 10 years from the Veterans Affairs (VA) Normative Aging Study (NAS). The Cohort Network visualized connections between exposures and outcomes across different publications and identified key exposures and outcomes, such as air pollution, DNA methylation, and lung function. We demonstrated the utility of the Cohort Network for new hypothesis generation, e.g., identification of potential mediators of exposure-outcome associations. The Cohort Network can be used by investigators to summarize the cohort's research and facilitate knowledge-driven discovery and dissemination.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Reconhecimento Automatizado de Padrão , Exposição Ambiental/análise , Poluição do Ar/análise , Estudos de Coortes
5.
Environ Res ; 229: 115949, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084943

RESUMO

BACKGROUND: The molecular effects of intermediate and long-term exposure to air pollution and temperature, such as those on extracellular microRNA (ex-miRNA) are not well understood but may have clinical consequences. OBJECTIVES: To assess the association between exposure to ambient air pollution and temperature and ex-miRNA profiles. METHODS: Our study population consisted of 734 participants in the Normative Aging Study (NAS) between 1999 and 2015. We used high-resolution models to estimate four-week, eight-week, twelve-week, six-month, and one-year moving averages of PM2.5, O3, NO2, and ambient temperature based on geo-coded residential addresses. The outcome of interest was the extracellular microRNA (ex-miRNA) profile of each participant over time. We used a longitudinal quantile regression approach to estimate the association between the exposures and each ex-miRNA. Results were corrected for multiple comparisons and ex-miRNAs that were still significantly associated with the exposures were further analyzed using KEGG pathway analysis and Ingenuity Pathway Analysis. RESULTS: We found 151 significant associations between levels of PM2.5, O3, NO2, and ambient temperature and 82 unique ex-miRNAs across multiple quantiles. Most of the significant results were associations with intermediate-term exposure to O3, long-term exposure to PM2.5, and both intermediate and long-term exposure to ambient temperature. The exposures were most often associated with the 75th and 90th percentile of the outcomes. Pathway analyses of significant ex-miRNAs revealed their involvement in biological pathways involving cell function and communication as well as clinical diseases such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSION: Our results show that intermediate and long-term exposure to all our exposures of interest were associated with changes in the ex-miRNA profile of study participants. Further studies on environmental risk factors and ex-miRNAs are warranted.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , MicroRNAs , Ozônio , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Temperatura , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Envelhecimento , MicroRNAs/análise , Exposição Ambiental/análise , Ozônio/análise
6.
Environ Int ; 171: 107735, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640488

RESUMO

BACKGROUND: While the health effects of air pollution and temperature are widely studied, the molecular effects are poorly understood. Extracellular microRNAs (ex-miRNAs) have the potential to serve as diagnostic or prognostic biomarkers and/or to act as intercellular signaling molecules that mediate the effects of environmental exposures on health outcomes. METHODS: We examined the relationship between short-term exposure to air pollution and ambient temperature and the ex-miRNA profiles of participants in the Normative Aging Study (NAS) from 1999 to 2015. Our exposures were defined as same-day, two-day, three-day, one-week, two-week, and three-week moving averages of PM2.5, NO2, O3, and temperature which were derived from high-resolution spatio-temporal models. The ex-miRNA profiles of the subjects were obtained during follow-up visits. We analyzed the data using a longitudinal quantile regression model adjusted for individual covariates, batch effects, and time trends. We adjusted for multiple comparisons using a false discovery rate (FDR) correction. Ex-miRNAs that were significantly associated with exposures were further investigated using pathway analyses. RESULTS: We found that all the examined exposures were associated with changes in ex-miRNA profiles in our study, particularly PM2.5 which was responsible for most of the statistically significant results. We found 110 statistically significant exposure-outcome relationships that revealed associations with the levels of 52 unique ex-miRNAs. Pathway analyses showed these ex-miRNAs have been linked to target mRNAs, genes, and biological mechanisms that could affect virtually every organ system, and as such may be linked to multiple clinical disease presentations such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSIONS: Air pollution and temperature exposures were significantly associated with alterations in the ex-miRNA profiles of NAS subjects with possible biological consequences.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , MicroRNAs , Humanos , Envelhecimento , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , MicroRNAs/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Temperatura
7.
Am J Respir Crit Care Med ; 207(1): 50-59, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943330

RESUMO

Rationale: Early detection of respiratory diseases is critical to facilitate delivery of disease-modifying interventions. Extracellular vesicle-enriched microRNAs (EV-miRNAs) may represent reliable markers of early lung injury. Objectives: Evaluate associations of plasma EV-miRNAs with lung function. Methods: The prospective NAS (Normative Aging Study) collected plasma EV-miRNA measurements from 1996-2015 and spirometry every 3-5 years through 2019. Associations of EV-miRNAs with baseline lung function were modeled using linear regression. To complement the individual miRNA approach, unsupervised machine learning was used to identify clusters of participants with distinct EV-miRNA profiles. Associations of EV-miRNA profiles with multivariate latent longitudinal lung function trajectories were modeled using log binomial regression. Biological functions of significant EV-miRNAs were explored using pathway analyses. Results were replicated in an independent sample of NAS participants and in the HEALS (Health Effects of Arsenic Longitudinal Study). Measurements and Main Results: In the main cohort of 656 participants, 51 plasma EV-miRNAs were associated with baseline lung function (false discovery rate-adjusted P value < 0.05), 28 of which were replicated in the independent NAS sample and/or in the HEALS cohort. A subset of participants with distinct EV-miRNA expression patterns had increased risk of declining lung function over time, which was replicated in the independent NAS sample. Significant EV-miRNAs were shown in pathway analyses to target biological pathways that regulate respiratory cellular immunity, the lung inflammatory response, and airway structural integrity. Conclusions: Plasma EV-miRNAs may represent a robust biomarker of subclinical lung injury and may facilitate early identification and treatment of patients at risk of developing overt lung disease.


Assuntos
Vesículas Extracelulares , Lesão Pulmonar , MicroRNAs , Humanos , MicroRNAs/metabolismo , Lesão Pulmonar/diagnóstico , Estudos Longitudinais , Estudos Prospectivos , Biomarcadores/metabolismo , Pulmão/metabolismo
8.
Aging (Albany NY) ; 14(17): 6859-6886, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36069796

RESUMO

BACKGROUND: Aging-related cognitive decline is an early symptom of Alzheimer's disease and other dementias, and on its own can have substantial consequences on an individual's ability to perform important everyday functions. Despite increasing interest in the potential roles of extracellular microRNAs (miRNAs) in central nervous system (CNS) pathologies, there has been little research on extracellular miRNAs in early stages of cognitive decline. We leverage the longitudinal Normative Aging Study (NAS) cohort to investigate associations between plasma miRNAs and cognitive function among cognitively normal men. METHODS: This study includes data from up to 530 NAS participants (median age: 71.0 years) collected from 1996 to 2013, with a total of 1,331 person-visits (equal to 2,471 years of follow up). Global cognitive function was assessed using the Mini-Mental State Examination (MMSE). Plasma miRNAs were profiled using small RNA sequencing. Associations of expression of 381 miRNAs with current cognitive function and rate of change in cognitive function were assessed using linear regression (N = 457) and linear mixed models (N = 530), respectively. RESULTS: In adjusted models, levels of 2 plasma miRNAs were associated with higher MMSE scores (p < 0.05). Expression of 33 plasma miRNAs was associated with rate of change in MMSE scores over time (p < 0.05). Enriched KEGG pathways for miRNAs associated with concurrent MMSE and MMSE trajectory included Hippo signaling and extracellular matrix-receptor interactions. Gene targets of miRNAs associated with MMSE trajectory were additionally associated with prion diseases and fatty acid biosynthesis. CONCLUSIONS: Circulating miRNAs were associated with both cross-sectional cognitive function and rate of change in cognitive function among cognitively normal men. Further research is needed to elucidate the potential functions of these miRNAs in the CNS and investigate relationships with other neurological outcomes.


Assuntos
Disfunção Cognitiva , MicroRNAs , Veteranos , Idoso , Envelhecimento/genética , Cognição/fisiologia , Estudos Transversais , Ácidos Graxos , Humanos , Masculino , MicroRNAs/genética , Estudos Prospectivos
9.
PLoS One ; 17(7): e0268700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881632

RESUMO

This study investigated the associations between solar and geomagnetic activity and circulating biomarkers of systemic inflammation and endothelial activation in the Normative Aging Study (NAS) cohort. Mixed effects models with moving day averages from day 0 to day 28 were used to study the associations between solar activity (sunspot number (SSN), interplanetary magnetic field (IMF)), geomagnetic activity (planetary K index (Kp index), and various inflammatory and endothelial markers. Biomarkers included intracellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), C-reactive protein (CRP), and fibrinogen. After adjusting for demographic and meteorological variables, we observed significant positive associations between sICAM-1 and sVCAM-1 concentrations and solar and geomagnetic activity parameters: IMF, SSN, and Kp. Additionally, a negative association was observed between fibrinogen and Kp index and a positive association was observed for CRP and SSN. These results demonstrate that solar and geomagnetic activity might be upregulating endothelial activation and inflammation.


Assuntos
Molécula 1 de Adesão Intercelular , Molécula 1 de Adesão de Célula Vascular , Biomarcadores , Proteína C-Reativa/análise , Fibrinogênio/análise , Humanos , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Extratos Vegetais , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Sci Total Environ ; 839: 156235, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644403

RESUMO

BACKGROUND: Solar and geomagnetic activity (GA) have been linked to increased cardiovascular (CVD) events. We hypothesize that heart rate variability (HRV) may be the biological mechanism between increased CVD risk and intense geomagnetic disturbances (GMD). METHODS: To evaluate the impact of GA and intense GMD on HRV in 809 elderly men [age mean 74.5 (SD = 6.8)] enrolled in the Normative Aging Study (Greater Boston Area), we performed repeated-measures using mixed-effects regression models. We evaluated two HRV outcomes: the square root of the mean squared differences of successive normal-to-normal intervals (r-MSSD) and the standard deviation of normal-to-normal heartbeat intervals (SDNN) in milliseconds (ms). We also compared the associations between Kp and HRV in patients with and without comorbidities such as diabetes and coronary heart diseases (CHD). We used data on global planetary K-Index (Kp) from middle latitudes as a GA and GMD (>75th Kp) parameters from the National Oceanic and Atmospheric Agency's Space Weather Prediction Center. RESULTS: We found a near immediate effect of continuous and higher Kp on reduced HRV for exposures up to 24 h prior to electrocardiogram recording. A 75th percentile increase in 15-hour Kp prior the examination was associated with a -14.7 ms change in r-MSSD (95 CI: -23.1, -6.3, p-value = 0.0007) and a -8.2 ms change in SDNN (95 CI: -13.9, -2.5, p-value = 0.006). The associations remained similar after adjusting the models for air pollutants over the exposure window prior to the event. In periods of intense GMD, the associations were stronger in patients with CHD and non-diabetes. CONCLUSIONS: This is the first study to demonstrate the potential adverse effects of geomagnetic activity on reduced heart rate variability in a large epidemiologic cohort over an extended period, which may have important clinical implications among different populations.


Assuntos
Poluentes Atmosféricos , Doença das Coronárias , Idoso , Envelhecimento/fisiologia , Eletrocardiografia , Frequência Cardíaca , Humanos , Masculino
11.
Respir Med ; 200: 106896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35716602

RESUMO

BACKGROUND: The Epigenetic Smoking Status Estimator (EpiSmokEr) predicts smoking phenotypes based on DNA methylation at 121 CpG sites. OBJECTIVE: Evaluate associations of EpiSmokEr-predicted versus self-reported smoking phenotypes with lung function and all-cause mortality in a cohort of older adults. METHODS: The prospective Normative Aging Study collected DNA methylation measurements from 1999 to 2012 with follow-up through 2016. The R package EpiSmokEr derived predicted smoking phenotypes based on DNA methylation levels assayed by the Illumina HumanMethylation450 Beadchip. Spirometry was collected every 3-5 years. Airflow limitation was defined as forced expiratory volume in 1 s/forced vital capacity <0.7. Vital status was monitored through periodic mailings. RESULTS: Among 784 participants contributing 5414 person-years of follow-up, the EpiSmokEr-predicted smoking phenotypes matched the self-reported phenotypes for 228 (97%) never smokers and 22 (71%) current smokers. In contrast, EpiSmokEr classified 407 (79%) self-reported former smokers as never smokers. Nonetheless, the EpiSmokEr-predicted former smoking phenotype was more strongly associated with incident airflow limitation (hazard ratio [HR] = 3.15, 95% confidence interval [CI] = 1.50-6.59) and mortality (HR = 2.11, 95% CI = 1.56-2.85) compared to the self-reported former smoking phenotype (airflow limitation: HR = 2.21, 95% CI = 1.13-4.33; mortality: HR = 1.08, 95% CI = 0.86-1.36). Risk of airflow limitation and death did not differ among self-reported never smokers and former smokers who were classified as never smokers. The discriminative accuracy of EpiSmokEr-predicted phenotypes for incident airflow limitation and mortality was improved compared to self-reported phenotypes. CONCLUSIONS: The DNA methylation-based EpiSmokEr classifier may be a useful surrogate of smoking-induced lung damage and may identify former smokers most at risk of adverse smoking-related health effects.


Assuntos
Poluição por Fumaça de Tabaco , Metilação de DNA/genética , Volume Expiratório Forçado , Humanos , Pulmão , Estudos Prospectivos , Fatores de Risco
12.
Sci Total Environ ; 838(Pt 3): 156434, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660608

RESUMO

BACKGROUND: Increased solar and geomagnetic activity (SGA) may alter sympathetic nervous system activity, reduce antioxidant activity, and modulate physiochemical processes that contribute to atmospheric aerosols, all which may reduce pulmonary function. OBJECTIVES: Investigate associations between forced expiratory volume at 1 s (FEV1) and forced vital capacity (FVC) with SGA, and assess whether SGA enhances adverse effects of particulate pollution, black carbon (BC) and particulate matter ≤2.5 µm in diameter (PM2.5). METHODS: We conducted a repeated measures analysis in 726 Normative Aging Study participants (Boston, Massachusetts, USA) between 2000 and 2017, using interplanetary magnetic field (IMF), planetary K index (Kp), and sunspot number (SSN) as SGA measures. Linear mixed effects models were used to assess exposure moving averages up to 28 days for both SGA and pollution. RESULTS: Increases in IMF, Kp Index and SSN from the day of the pulmonary function test averaged through day 28 of were associated with a significant decrement in FEV1 and FVC, after adjusting for potential confounders. There were greater effects for longer moving averages and enhanced effects of PM2.5 and BC on FEV1 and FVC with increased SGA. For example, for each inter-quartile increase (4.55 µg/m3) in average PM2.5 28 days before testing, low IMF (10th percentile: 3.2 nT) was associated with a -21.4 ml (95 % CI: -60.8, 18.1) and -7.1 ml (95 % CI: -37.7, 23·4) decrease in FVC and FEV1, respectively; high IMF (90th percentile: 9.0 nT) was associated with a -120.7 ml (95 % CI:-166.5, -74.9) and -78.6 ml (95 % CI: -114.3, -42·8) decrease in FVC and FEV1, respectively. DISCUSSION: Increased periods of solar and geomagnetic activity may directly contribute to impaired pulmonary function and also enhance effects of PM2.5 and BC. Since exposure to solar activity is ubiquitous, stricter measures in reducing air pollution exposures are warranted, particularly in elderly populations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poeira/análise , Exposição Ambiental/análise , Volume Expiratório Forçado , Humanos , Pulmão , Material Particulado/análise , Material Particulado/toxicidade , Fuligem/análise
13.
Aging Cell ; 21(6): e13608, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35546478

RESUMO

DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow-up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10-7 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, PMR  = 4.1 × 10-4 ) and negatively associated with longevity (Beta = -1.9, PMR  = 0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.


Assuntos
Doenças Cardiovasculares , Neoplasias , Biomarcadores , Doenças Cardiovasculares/genética , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Humanos , Masculino , Neoplasias/genética
14.
Am J Respir Crit Care Med ; 206(3): 321-336, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35536696

RESUMO

Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.


Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Pulmão
15.
Environ Res ; 212(Pt C): 113360, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35500859

RESUMO

Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation- and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (PCochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Metilação de DNA , Epigenoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dióxido de Nitrogênio/análise , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise
16.
Elife ; 112022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029144

RESUMO

Background: Measures to quantify changes in the pace of biological aging in response to intervention are needed to evaluate geroprotective interventions for humans. Previously, we showed that quantification of the pace of biological aging from a DNA-methylation blood test was possible (Belsky et al., 2020). Here, we report a next-generation DNA-methylation biomarker of Pace of Aging, DunedinPACE (for Pace of Aging Calculated from the Epigenome). Methods: We used data from the Dunedin Study 1972-1973 birth cohort tracking within-individual decline in 19 indicators of organ-system integrity across four time points spanning two decades to model Pace of Aging. We distilled this two-decade Pace of Aging into a single-time-point DNA-methylation blood-test using elastic-net regression and a DNA-methylation dataset restricted to exclude probes with low test-retest reliability. We evaluated the resulting measure, named DunedinPACE, in five additional datasets. Results: DunedinPACE showed high test-retest reliability, was associated with morbidity, disability, and mortality, and indicated faster aging in young adults with childhood adversity. DunedinPACE effect-sizes were similar to GrimAge Clock effect-sizes. In analysis of incident morbidity, disability, and mortality, DunedinPACE and added incremental prediction beyond GrimAge. Conclusions: DunedinPACE is a novel blood biomarker of the pace of aging for gerontology and geroscience. Funding: This research was supported by US-National Institute on Aging grants AG032282, AG061378, AG066887, and UK Medical Research Council grant MR/P005918/1.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigenoma , Adolescente , Biomarcadores/sangue , Criança , Pré-Escolar , Estudos de Coortes , Epigênese Genética , Feminino , Humanos , Masculino , Nova Zelândia
17.
Environ Res ; 204(Pt B): 112066, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34537201

RESUMO

It has been hypothesized that solar and geomagnetic activity can affect the function of the autonomic nervous system (ANS) and melatonin secretion, both of which may influence immune response. We investigated the association between solar geomagnetic activity and white blood cell counts in the Normative Aging Study (NAS) Cohort between 2000 and 2013. Linear mixed effects models with moving day averages ranging from 0 to 28 days were used to evaluate the effects of solar activity measures, interplanetary magnetic field (IMF), and sunspot number (SSN), and a measure of geomagnetic activity, K Index (K), on total white blood cell (WBC), neutrophil, monocytes, lymphocyte, eosinophil, and basophil concentrations. After adjusting for demographic and health-related factors, there were consistently significant associations between IMF, SSN, and Kp index, with reductions in total WBC, neutrophils, and basophil counts. These associations were stronger with longer moving averages. The associations were similar after adjusting for ambient air particulate pollution and particle radioactivity. Our findings suggest that periods of increased solar and geomagnetic activity result in lower WBC, neutrophil, and basophil counts that may contribute to mil mild immune suppression.


Assuntos
Envelhecimento , Leucócitos , Humanos , Contagem de Leucócitos , Monócitos , Neutrófilos
18.
Thorax ; 77(9): 919-928, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34650005

RESUMO

RATIONALE: The biochemical mechanisms underlying lung function are incompletely understood. OBJECTIVES: To identify and validate the plasma metabolome of lung function using two independent adult cohorts: discovery-the European Prospective Investigation into Cancer-Norfolk (EPIC-Norfolk, n=10 460) and validation-the VA Normative Aging Study (NAS) metabolomic cohort (n=437). METHODS: We ran linear regression models for 693 metabolites to identify associations with forced expiratory volume in one second (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC), in EPIC-Norfolk then validated significant findings in NAS. Significance in EPIC-Norfolk was denoted using an effective number of tests threshold of 95%; a metabolite was considered validated in NAS if the direction of effect was consistent and p<0.05. MEASUREMENTS AND MAIN RESULTS: Of 156 metabolites that associated with FEV1 in EPIC-Norfolk after adjustment for age, sex, body mass index, height, smoking and asthma status, 34 (21.8%) validated in NAS, including several metabolites involved in oxidative stress. When restricting the discovery sample to men only, a similar percentage, 18 of 79 significant metabolites (22.8%) were validated. A smaller number of metabolites were validated for FEV1/FVC, 6 of 65 (9.2%) when including all EPIC-Norfolk as the discovery population, and 2 of 34 (5.9%) when restricting to men. These metabolites were characterised by involvement in respiratory track secretants. Interestingly, no metabolites were validated for both FEV1 and FEV1/FVC. CONCLUSIONS: The validation of metabolites associated with respiratory function can help to better understand mechanisms of lung health and may assist the development of biomarkers.


Assuntos
Pulmão , Adulto , Volume Expiratório Forçado , Humanos , Masculino , Estudos Prospectivos , Testes de Função Respiratória , Capacidade Vital
19.
Nat Aging ; 1(5): 430-437, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34841262

RESUMO

Air pollution, especially the fine particulate matter (PM2.5), may impair cognitive performance1-3, but its short-term impact remains poorly understood. We investigated the short-term associations of PM2.5 with the cognitive performances of 954 white males measured as the global cognitive function (GCF) and Mini-Mental State Examination (MMSE) scores, and further explored whether taking nonsteroidal anti-inflammatory drugs (NSAIDs) could modify their relationships. Higher short-term exposure to PM2.5 demonstrated non-linear negative associations with cognitive function. Compared with the lowest quartile of the 28-day average PM2.5 concentration, the 2nd, 3rd, and 4th quartiles were associated with 0.378-, 0.376-, and 0.499-unit decreases in GCF score, 0.484-, 0.315-, and 0.414-unit decreases in MMSE score, and 69%, 45%, and 63% greater odds of low MMSE scores (≤25), respectively. Such adverse effects were attenuated among NSAIDs users compared to non-users. This study elucidates the short-term impacts of air pollution on cognition and warrants further investigations on the modifying effects of NSAIDs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Veteranos , Masculino , Humanos , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Envelhecimento , Material Particulado/efeitos adversos , Cognição , Anti-Inflamatórios
20.
J Am Heart Assoc ; 10(21): e021006, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713707

RESUMO

Background Since solar activity and related geomagnetic disturbances modulate autonomic nervous system activity, we hypothesized that these events would be associated with blood pressure (BP). Methods and Results We studied 675 elderly men from the Normative Aging Study (Boston, MA) with 1949 BP measurements between 2000 and 2017. Mixed-effects regression models were used to investigate the association of average 1-day (ie, day of BP measurement) to 28-day interplanetary magnetic field intensity, sunspot number, and a dichotomized measure of global geomagnetic activity (Kp index) in 4-day increments with diastolic and systolic BP. We adjusted for meteorological conditions and other covariates associated with BP, and in additional models adjusted for ambient air pollutants (particulate matter with an aerodynamic diameter ≤2.5 µm, black carbon, and particle number) and ambient particle radioactivity. There were positive associations between interplanetary magnetic field, sunspot number, and Kp index and BP that were greatest with these exposures averaged over 16 through 28 days before BP measurement. An interquartile range increase of 16-day interplanetary magnetic field and sunspot number and higher Kp index were associated with a 2.5 (95% CI, 1.7‒3.2), 2.8 (95% CI, 2.1‒3.4), and 1.7 (95% CI, 0.8‒2.5) mm Hg increase, respectively, for diastolic BP as well as a 2.1 (95% CI, 0.7‒3.6), 2.7 (95% CI, 1.5‒4.0), and 0.4 (95% CI, -1.2 to 2.1) mm Hg increase, respectively, for systolic BP. Associations remained after adjustment for ambient air pollutants and ambient particle radioactivity. Conclusions Solar activity and solar-driven geomagnetic disturbances were positively associated with BP, suggesting that these natural phenomena influence BP in elderly men.


Assuntos
Atividade Solar , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pressão Sanguínea , Exposição Ambiental , Humanos , Masculino , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...