Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37646578

RESUMO

Combination therapies targeting multiple organs and metabolic pathways are promising therapeutic options to combat obesity progression and/or its comorbidities. The alterations in the composition of the gut microbiota initially observed in obesity have been extended recently to functional alterations. Bacterial functions involve metabolites synthesis that may contribute to both the gut microbiota and the host physiology. Among them are B vitamins, whose metabolism at the systemic, tissue or microbial level are dysfunctional in obesity. We previously reported that the combination of oral supplementation of a prebiotic (fructo-oligosaccharides, FOS) and vitamin B7/B8 (biotin) impedes fat mass accumulation and hyperglycemia in mice with established obesity. This was associated with an attenuation of dysbiosis with improved microbial vitamin metabolism. We now extend this study by characterizing whole-body energy metabolism along with adipose tissue transcriptome and histology in this mouse model. We observed that FOS resulted in increased caloric excretion in parallel with down-regulation of genes and proteins involved in jejunal lipid transport. The combined treatments also strongly inhibited the accumulation of subcutaneous fat mass, with a reduced adipocyte size and expression of lipid metabolism genes. Down-regulation of inflammatory and fibrotic genes and proteins was also observed in both visceral and brown adipose tissues and liver by combined FOS and biotin supplementation. In conclusion, oral administration of a prebiotic and biotin has a beneficial impact on the metabolism of key organs involved in the pathophysiology of obesity, which could have promising translational applications.

2.
Gut Microbes ; 14(1): 2050635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35435140

RESUMO

Roux-en-Y gastric bypass (RYGB) is efficient at inducing drastic albeit variable weight loss and type-2 diabetes (T2D) improvements in patients with severe obesity and T2D. We hypothesized a causal implication of the gut microbiota (GM) in these metabolic benefits, as RYGB is known to deeply impact its composition. In a cohort of 100 patients with baseline T2D who underwent RYGB and were followed for 5-years, we used a hierarchical clustering approach to stratify subjects based on the severity of their T2D (Severe vs Mild) throughout the follow-up. We identified via nanopore-based GM sequencing that the more severe cases of unresolved T2D were associated with a major increase of the class Bacteroidia, including 12 species comprising Phocaeicola dorei, Bacteroides fragilis, and Bacteroides caecimuris. A key observation is that patients who underwent major metabolic improvements do not harbor this enrichment in Bacteroidia, as those who presented mild cases of T2D at all times. In a separate group of 36 patients with similar baseline clinical characteristics and preoperative GM sequencing, we showed that this increase in Bacteroidia was already present at baseline in the most severe cases of T2D. To explore the causal relationship linking this enrichment in Bacteroidia and metabolic alterations, we selected 13 patients across T2D severity clusters at 5-years and performed fecal matter transplants in mice. Our results show that 14 weeks after the transplantations, mice colonized with the GM of Severe donors have impaired glucose tolerance and insulin sensitivity as compared to Mild-recipients, all in the absence of any difference in body weight and composition. GM sequencing of the recipient animals revealed that the hallmark T2D-severity associated bacterial features were transferred and were associated with the animals' metabolic alterations. Therefore, our results further establish the GM as a key contributor to long-term glucose metabolism improvements (or lack thereof) after RYGB.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Microbioma Gastrointestinal , Animais , Bacteroidetes , Peso Corporal , Diabetes Mellitus Tipo 2/microbiologia , Derivação Gástrica/métodos , Humanos , Camundongos , Redução de Peso
3.
Gut ; 71(12): 2463-2480, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35017197

RESUMO

OBJECTIVES: Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN: We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS: Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION: Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER: NCT02059538.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Mórbida , Complexo Vitamínico B , Humanos , Camundongos , Animais , Prebióticos , Obesidade Mórbida/cirurgia , Biotina/farmacologia , Complexo Vitamínico B/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação
4.
Obes Rev ; 23(2): e13377, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767276

RESUMO

There are numerous factors involved in obesity progression and maintenance including systemic low-grade inflammation, adipose tissue dysfunction, or gut microbiota dysbiosis. Recently, a growing interest has arisen for vitamins' role in obesity and related disorders, both at the host and gut bacterial level. Indeed, vitamins are provided mostly by food, but some, from the B and K groups in particular, can be synthesized by the gut bacterial ecosystem and absorbed in the colon. Knowing that vitamin deficiency can alter many important cellular functions and lead to serious health issues, it is important to carefully monitor the vitamin status of patients with obesity and potentially already existing comorbidities as well as to examine the dysbiotic gut microbiota and thus potentially altered bacterial metabolism of vitamins. In this review, we examined both murine and human studies, to assess the prevalence of sub-optimal levels of several vitamins in obesity and metabolic alterations. This review also examines the relationship between vitamins and the gut microbiota in terms of vitamin production and the modulation of the gut bacterial ecosystem in conditions of vitamin shortage or supplementation. Furthermore, some strategies to improve vitamin status of patients with severe obesity are proposed within this review.


Assuntos
Microbioma Gastrointestinal , Animais , Disbiose , Ecossistema , Humanos , Camundongos , Obesidade/microbiologia , Vitaminas
5.
Sci Rep ; 9(1): 20184, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874958

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Sci Rep ; 9(1): 5939, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976027

RESUMO

Symbiosis is a major force of evolutionary change, influencing virtually all aspects of biology, from population ecology and evolution to genomics and molecular/biochemical mechanisms of development and reproduction. A remarkable example is Wolbachia endobacteria, present in some parasitic nematodes and many arthropod species. Acquisition of genomic data from diverse Wolbachia clades will aid in the elucidation of the different symbiotic mechanisms(s). However, challenges of de novo assembly of Wolbachia genomes include the presence in the sample of host DNA: nematode/vertebrate or insect. We designed biotinylated probes to capture large fragments of Wolbachia DNA for sequencing using PacBio technology (LEFT-SEQ: Large Enriched Fragment Targeted Sequencing). LEFT-SEQ was used to capture and sequence four Wolbachia genomes: the filarial nematode Brugia malayi, wBm, (21-fold enrichment), Drosophila mauritiana flies (2 isolates), wMau (11-fold enrichment), and Aedes albopictus mosquitoes, wAlbB (200-fold enrichment). LEFT-SEQ resulted in complete genomes for wBm and for wMau. For wBm, 18 single-nucleotide polymorphisms (SNPs), relative to the wBm reference, were identified and confirmed by PCR. A limit of LEFT-SEQ is illustrated by the wAlbB genome, characterized by a very high level of insertion sequences elements (ISs) and DNA repeats, for which only a 20-contig draft assembly was achieved.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Simbiose , Wolbachia/genética , Aedes/microbiologia , Animais , Drosophila melanogaster/microbiologia , Evolução Molecular , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...