Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Energy Sustain Dev ; 802024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799418

RESUMO

The disease burden related to air pollution from traditional solid-fuel cooking practices in low- and middle-income countries impacts millions of people globally. Although the use of liquefied petroleum gas (LPG) fuel for cooking can meaningfully reduce household air pollution concentrations, major barriers, including affordability and accessibility, have limited widespread adoption. Using a randomized controlled trial, our objective was to evaluate the association between the cost and use of LPG among 23 rural Rwandan households. We provided a 2-burner LPG stove with accessories and incorporated a "pay-as-you-go" (PAYG) LPG service model that included fuel delivery. PAYG services remove the large up-front cost of cylinder refills by integrating "smart meter" technology that allows participants to pay in incremental amounts, as needed. We assigned three randomized discounted prices for LPG to each household at ~4-week intervals over a 12-week period. We modeled the relationship between randomized PAYG LPG price and use (standardized to monthly periods), analyzing effect modification by relative household wealth. A 1000 Rwandan Franc (about 1 USD at the time of the study) increase in LPG price/kg was associated with a 4.1 kg/month decrease in use (95% confidence interval [CI]: -6.7, -1.6; n=69 observations). Wealth modified this association; we observed a 9.7 kg/month reduction (95% CI: -14.8, -4.5) among wealthier households and a 2.5 kg/month reduction (95% CI: -5.3, 0.3) among lower-wealth households (p-interaction=0.01). The difference in price sensitivity was driven by higher LPG use among wealthier households at more heavily discounted prices; from an 80% to 10% discount, wealthy households used 17.5 to 5.3 kg/month and less wealthy households used 6.2 to 3.1 kg/month. Our pilot-level experimental evidence of PAYG LPG in a rural low-resource setting suggests that further exploration of subsidized pricing varied by household wealth is needed to ensure future policy initiatives can achieve targets without exacerbating inequities.

2.
Am J Respir Crit Care Med ; 209(8): 909-927, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619436

RESUMO

Background: An estimated 3 billion people, largely in low- and middle-income countries, rely on unclean fuels for cooking, heating, and lighting to meet household energy needs. The resulting exposure to household air pollution (HAP) is a leading cause of pneumonia, chronic lung disease, and other adverse health effects. In the last decade, randomized controlled trials of clean cooking interventions to reduce HAP have been conducted. We aim to provide guidance on how to interpret the findings of these trials and how they should inform policy makers and practitioners.Methods: We assembled a multidisciplinary working group of international researchers, public health practitioners, and policymakers with expertise in household air pollution from within academia, the American Thoracic Society, funders, nongovernmental organizations, and global organizations, including the World Bank and the World Health Organization. We performed a literature search, convened four sessions via web conference, and developed consensus conclusions and recommendations via the Delphi method.Results: The committee reached consensus on 14 conclusions and recommendations. Although some trials using cleaner-burning biomass stoves or cleaner-cooking fuels have reduced HAP exposure, the committee was divided (with 55% saying no and 45% saying yes) on whether the studied interventions improved measured health outcomes.Conclusions: HAP is associated with adverse health effects in observational studies. However, it remains unclear which household energy interventions reduce exposure, improve health, can be scaled, and are sustainable. Researchers should engage with policy makers and practitioners working to scale cleaner energy solutions to understand and address their information needs.


Assuntos
Poluição do Ar , Países em Desenvolvimento , Humanos , Biomassa , Consenso , Sociedades , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Observacionais como Assunto
3.
Sensors (Basel) ; 23(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960676

RESUMO

Low-cost, long-term measures of air pollution concentrations are often needed for epidemiological studies and policy analyses of household air pollution. The Washington passive sampler (WPS), an ultra-low-cost method for measuring the long-term average levels of light-absorbing carbon (LAC) air pollution, uses digital images to measure the changes in the reflectance of a passively exposed paper filter. A prior publication on WPS reported high precision and reproducibility. Here, we deployed three methods to each of 10 households in Ulaanbaatar, Mongolia: one PurpleAir for PM2.5; two ultrasonic personal aerosol samplers (UPAS) with quartz filters for the thermal-optical analysis of elemental carbon (EC); and two WPS for LAC. We compared multiple rounds of 4-week-average measurements. The analyses calibrating the LAC to the elemental carbon measurement suggest that 1 µg of EC/m3 corresponds to 62 PI/month (R2 = 0.83). The EC-LAC calibration curve indicates an accuracy (root-mean-square error) of 3.1 µg of EC/m3, or ~21% of the average elemental carbon concentration. The RMSE values observed here for the WPS are comparable to the reported accuracy levels for other methods, including reference methods. Based on the precision and accuracy results shown here, as well as the increased simplicity of deployment, the WPS may merit further consideration for studying air quality in homes that use solid fuels.

4.
Environ Sci Technol ; 57(41): 15392-15400, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796739

RESUMO

Humans emit large salivary particles when talking, singing, and playing musical instruments, which have implications for respiratory disease transmission. Yet little work has been done to characterize the emission rates and size distributions of such particles. This work characterized large particle (dp > 35 µm in aerodynamic diameter) emissions from 70 volunteers of varying age and sex while vocalizing and playing wind instruments. Mitigation efficacies for face masks (while singing) and bell covers (while playing instruments) were also examined. Geometric mean particle count emission rates varied from 3.8 min-1 (geometric standard deviation [GSD] = 3.1) for brass instruments playing to 95.1 min-1 (GSD = 3.8) for talking. On average, talking produced the highest emission rates for large particles, in terms of both number and mass, followed by singing and then instrument playing. Neither age, sex, CO2 emissions, nor loudness (average dBA) were significant predictors of large particle emissions, contrary to previous findings for smaller particle sizes (i.e., for dp < 35 µm). Size distributions were similar between talking and singing (count median diameter = 53.0 µm, GSD = 1.69). Bell covers did not affect large particle emissions from most wind instruments, but face masks reduced large particle count emissions for singing by 92.5% (95% CI: 97.9%, 73.7%).


Assuntos
Música , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios , Humanos
5.
Heliyon ; 9(8): e18450, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560671

RESUMO

Chronic exposure to indoor and outdoor air pollution is linked to adverse human health impacts worldwide, and in children, these include increased respiratory symptoms, reduced cognitive and academic performance, and absences from school. African children are exposed to high levels of air pollution from aging diesel and gasoline second-hand vehicles, dusty roads, trash burning, and solid-fuel combustion for cooking. There is a need for more empirical evidence on the impact of air pollutants on schoolchildren in most countries of Africa. Therefore, we conducted a scoping review on schoolchildren's exposure to indoor and outdoor PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm and PM10 (particulate matter with an aerodynamic diameter less than 10 µm) in Africa. Following PRISMA guidelines, our search strategy yielded 2975 records, of which eight peer-reviewed articles met our selection criteria and were considered in the final analysis. We also analyzed satellite data on PM2.5 and PM10 levels in five African regions from 1990 to 2019 and compared schoolchildren's exposure to PM2.5 and PM10 levels in Africa with available data from the rest of the world. The findings showed that schoolchildren in Africa are frequently exposed to PM2.5 and PM10 levels exceeding the recommended World Health Organization air quality guidelines. We conclude with a list of recommendations and strategies to reduce air pollution exposure in African schools. Education can help to produce citizens who are literate in environmental science and policy. More air quality measurements in schools and intervention studies are needed to protect schoolchildren's health and reduce exposure to air pollution in classrooms across Africa.

6.
Environ Sci Technol ; 57(29): 10604-10614, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37450410

RESUMO

Exposure to air pollution is a leading risk factor for disease and premature death, but technologies for assessing personal exposure to particulate and gaseous air pollutants, including the timing and location of such exposures, are limited. We developed a small, quiet, wearable monitor, called the AirPen, to quantify personal exposures to fine particulate matter (PM2.5) and volatile organic compounds (VOCs). The AirPen combines physical sample collection (PM onto a filter and VOCs onto a sorbent tube) with a suite of low-cost sensors (for PM, VOCs, temperature, pressure, humidity, light intensity, location, and motion). We validated the AirPen against conventional personal sampling equipment in the laboratory and then conducted a field study to measure at-work and away-from-work exposures to PM2.5 and VOCs among employees at an agricultural facility in Colorado, USA. The resultant sampling and sensor data indicated that personal exposures to benzene, toluene, ethylbenzene, and xylenes were dominated by a specific workplace location. These results illustrate how the AirPen can be used to advance our understanding of personal exposure to air pollution as a function of time, location, source, and activity, even in the absence of detailed activity diary data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Humanos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos
7.
Environ Health Perspect ; 131(6): 65002, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389972

RESUMO

BACKGROUND: Disaster events adversely affect the health of millions of individuals each year. They create exposure to physical, chemical, biological, and psychosocial hazards while simultaneously exploiting community and individual-level vulnerabilities that allow such exposures to exert harm. Since 2013, the National Institute of Environmental Health Sciences (NIEHS) has led the development of the Disaster Research Response (DR2) program and infrastructure; however, research exploring the nature and effects of disasters on human health is lacking. One reason for this research gap is the challenge of developing and deploying cost-effective sensors for exposure assessment during disaster events. OBJECTIVES: The objective of this commentary is to synergize the consensus findings and recommendations from a panel of experts on sensor science in support of DR2. METHODS: The NIEHS convened the workshop, "Getting Smart about Sensors for Disaster Response Research" on 28 and 29 July 2021 to discuss current gaps and recommendations for moving the field forward. The workshop invited full discussion from multiple viewpoints, with the goal of identifying recommendations and opportunities for further development of this area of research. The panel of experts included leaders in engineering, epidemiology, social and physical sciences, and community engagement, many of whom had firsthand experience with DR2. DISCUSSION: The primary finding of this workshop is that exposure science in support of DR2 is severely lacking. We highlight unique barriers to DR2, such as the need for time-sensitive exposure data, the chaos and logistical challenges that ensue from a disaster event, and the lack of a robust market for sensor technologies in support of environmental health science. We highlight a need for sensor technologies that are more scalable, reliable, and versatile than those currently available to the research community. We also recommend that the environmental health community renew efforts in support of DR2 facilitation, collaboration, and preparedness. https://doi.org/10.1289/EHP12270.


Assuntos
Desastres , Estados Unidos , Humanos , Saúde Ambiental , Lacunas de Evidências , National Institute of Environmental Health Sciences (U.S.)
8.
Environ Sci Technol Lett ; 10(3): 247-253, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36938150

RESUMO

Particulate matter (PM) air pollution is a major health hazard. The health effects of PM are closely linked to particle size, which governs its deposition in (and penetration through) the respiratory tract. In recent years, low-cost sensors that report particle concentrations for multiple-sized fractions (PM1.0, PM2.5, PM10) have proliferated in everyday use and scientific research. However, knowledge of how well these sensors perform across the full range of reported particle size fractions is limited. Unfortunately, erroneous particle size data can lead to spurious conclusions about exposure, misguided interventions, and ineffectual policy decisions. We assessed the linearity, bias, and precision of three low-cost sensor models, as a function of PM size fraction, in an urban setting. Contrary to manufacturers' claims, sensors are only accurate for the smallest size fraction (PM1). The PM1.0-2.5 and PM2.5-10 size fractions had large bias, noise, and uncertainty. These results demonstrate that low-cost aerosol sensors (1) cannot discriminate particle size accurately and (2) only report linear and precise measures of aerosol concentration in the accumulation mode size range (i.e., between 0.1 and 1 µm). We recommend that crowdsourced air quality monitoring networks stop reporting coarse (PM2.5-10) mode and PM10 mass concentrations from these sensors.

10.
Appl Spectrosc ; 77(3): 261-269, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474309

RESUMO

The ability to obtain information on the composition of airborne particles is a necessary part of identifying and controlling risks from exposure to potentially toxic materials, especially in the workplace. However, very few aerosol sampling instruments can characterize elemental composition in real time or measure large inhalable particles with aerodynamic diameter exceeding 20 µm. Here, we present the development and validation of a method for real time elemental composition analysis of large inhalable particles using laser-induced breakdown spectroscopy (LIBS). The prototype sensor uses a passive inlet and an optical triggering system to ablate falling particles with an LIBS plasma. Particle composition is quantified based on collected emission spectra using a real-time material classification algorithm. The approach was validated with a set of 1480 experimental spectra from four different aerosol test materials. We have studied effects of varying detection thresholds and find operating conditions with good agreement to truth values (F1 score ≥ 0.9). Details of the analysis method, including subtracting the spectral contribution from the air plasma and reasons for the infrequent misclassifications, are discussed. The LIBS elemental analysis can be combined with our previously demonstrated direct-reading particle sizer (DRPS) to provide a system capable of both counting, sizing, and elemental analysis of large inhalable particles.

11.
Biometrics ; 79(3): 2592-2604, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35788984

RESUMO

Exposure to air pollution is associated with increased morbidity and mortality. Recent technological advancements permit the collection of time-resolved personal exposure data. Such data are often incomplete with missing observations and exposures below the limit of detection, which limit their use in health effects studies. In this paper, we develop an infinite hidden Markov model for multiple asynchronous multivariate time series with missing data. Our model is designed to include covariates that can inform transitions among hidden states. We implement beam sampling, a combination of slice sampling and dynamic programming, to sample the hidden states, and a Bayesian multiple imputation algorithm to impute missing data. In simulation studies, our model excels in estimating hidden states and state-specific means and imputing observations that are missing at random or below the limit of detection. We validate our imputation approach on data from the Fort Collins Commuter Study. We show that the estimated hidden states improve imputations for data that are missing at random compared to existing approaches. In a case study of the Fort Collins Commuter Study, we describe the inferential gains obtained from our model including improved imputation of missing data and the ability to identify shared patterns in activity and exposure among repeated sampling days for individuals and among distinct individuals.


Assuntos
Algoritmos , Modelos Estatísticos , Humanos , Teorema de Bayes , Fatores de Tempo , Interpretação Estatística de Dados , Simulação por Computador
12.
Geohealth ; 6(12): e2022GH000672, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36467256

RESUMO

We investigate socioeconomic disparities in air quality at public schools in the contiguous US using high resolution estimates of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations. We find that schools with higher proportions of people of color (POC) and students eligible for the federal free or reduced lunch program, a proxy for poverty level, are associated with higher pollutant concentrations. For example, we find that the median annual NO2 concentration for White students, nationally, was 7.7 ppbv, compared to 9.2 ppbv for Black and African American students. Statewide and regional disparities in pollutant concentrations across racial, ethnic, and poverty groups are consistent with nationwide results, where elevated NO2 concentrations were associated with schools with higher proportions of POC and higher levels of poverty. Similar, though smaller, differences were found in PM2.5 across racial and ethnic groups in most states. Racial, ethnic, and economic segregation across the rural-urban divide is likely an important factor in pollution disparities at US public schools. We identify distinct regional patterns of disparities, highlighting differences between California, New York, and Florida. Finally, we highlight that disparities exist not only across urban and non-urban lines but also within urban environments.

13.
Nat Commun ; 13(1): 6329, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319637

RESUMO

Persons of color have been exposed to a disproportionate burden of air pollution across the United States for decades. Yet, the inequality in exposure to known toxic elements of air pollution is unclear. Here, we find that populations living in racially segregated communities are exposed to a form of fine particulate matter with over three times higher mass proportions of known toxic and carcinogenic metals. While concentrations of total fine particulate matter are two times higher in racially segregated communities, concentrations of metals from anthropogenic sources are nearly ten times higher. Populations living in racially segregated communities have been disproportionately exposed to these environmental stressors throughout the past decade. We find evidence, however, that these disproportionate exposures may be abated though targeted regulatory action. For example, recent regulations on marine fuel oil not only reduced vanadium concentrations in coastal cities, but also sharply lessened differences in vanadium exposure by segregation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos , Humanos , Poluentes Atmosféricos/análise , Etnicidade , Vanádio , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental , Exposição Ambiental/análise
14.
Sci Rep ; 12(1): 11303, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788635

RESUMO

Aerosol emissions from wind instruments are a suspected route of transmission for airborne infectious diseases, such as SARS-CoV-2. We evaluated aerosol number emissions (from 0.25 to 35.15 µm) from 81 volunteer performers of both sexes and varied age (12 to 63 years) while playing wind instruments (bassoon, clarinet, flute, French horn, oboe, piccolo, saxophone, trombone, trumpet, and tuba) or singing. Measured emissions spanned more than two orders of magnitude, ranging in rate from < 8 to 1,815 particles s-1, with brass instruments, on average, producing 191% (95% CI 81-367%) more aerosol than woodwinds. Being male was associated with a 70% increase in emissions (vs. female; 95% CI 9-166%). Each 1 dBA increase in sound pressure level was associated with a 28% increase (95% CI 10-40%) in emissions from brass instruments; sound pressure level was not associated with woodwind emissions. Age was not a significant predictor of emissions. The use of bell covers reduced aerosol emissions from three brass instruments tested (trombone, tuba, and trumpet), with average reductions ranging from 53 to 73%, but not for the two woodwind instruments tested (oboe and clarinet). Results from this work can facilitate infectious disease risk management for the performing arts.


Assuntos
COVID-19 , Música , Adolescente , Adulto , Aerossóis , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Som , Adulto Jovem
15.
Environ Res ; 214(Pt 2): 113869, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820656

RESUMO

Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Animais , Carbono , Culinária , Monitoramento Ambiental , Honduras , Humanos , Material Particulado/análise , População Rural , Fuligem
16.
Int J Hyg Environ Health ; 241: 113949, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35259686

RESUMO

Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 µg/m3 (65,154 µg/m3) for traditional stove users and 52 µg/m3 (39, 81 µg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Proteína C-Reativa , Culinária/métodos , Estudos Transversais , Feminino , Honduras/epidemiologia , Humanos , Material Particulado/análise , Madeira/análise , Madeira/química
17.
Environ Sci Technol Lett ; 9(6): 538-542, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38037640

RESUMO

Introduction: Household air pollution from cooking-related biomass combustion remains a leading risk factor for global health. Black carbon (BC) is an important component of particulate matter (PM) in household air pollution. We evaluated the impact of the engineered, wood-burning Justa stove intervention on BC concentrations. Methods: We conducted a 3-year stepped-wedge randomized controlled trial with 6 repeated visits among 230 female primary cooks in rural Honduras. Participants used traditional stoves at baseline and were randomized to receive the Justa after visit 2 or after visit 4. At each visit, we measured 24-hour gravimetric personal and kitchen fine PM (PM2.5) concentrations and estimated BC mass concentrations (Sootscan Transmissometer). We conducted intent-to-treat analyses using linear mixed models with natural log-transformed 24-hour personal and kitchen BC. Results: BC concentrations were reduced for households assigned to the Justa vs. traditional stoves: e.g., personal BC geometric mean (GSD), 3.6 µg/m3 (6.4) vs. 11.5 µg/m3 (4.6), respectively. Following the intervention, we observed 53% (95% CI: 35-65%) lower geometric mean personal BC concentrations and 76% (95% CI: 66-83%) lower geometric mean kitchen BC concentrations. Conclusions: The Justa stove intervention substantially reduced BC concentrations, mitigating household air pollution and potentially benefitting human and climate health.

18.
Int J Environ Health Res ; 32(3): 565-578, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32615777

RESUMO

Household air pollution is a leading risk factor for morbidity and premature mortality. Numerous cookstoves have been developed to reduce household air pollution, but it is unclear whether such cookstoves meaningfully improve health. In a controlled exposure study with a crossover design, we assessed the effect of pollution emitted from multiple cookstoves on acute differences in blood lipids and inflammatory biomarkers. Participants (n = 48) were assigned to treatment sequences of exposure to air pollution emitted from five cookstoves and a filtered-air control. Blood lipids and inflammatory biomarkers were measured before and 0, 3, and 24 hours after treatments. Many of the measured outcomes had inconsistent results. However, compared to control, intercellular adhesion molecule-1 was higher 3 hours after all treatments, and C-reactive protein and serum amyloid-A were higher 24 hours after the highest treatment. Our results suggest that short-term exposure to cookstove air pollution can increase inflammatory biomarkers within 24 hours.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluição do Ar em Ambientes Fechados/análise , Biomarcadores , Culinária , Humanos , Lipídeos
19.
Build Environ ; 2062021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34764540

RESUMO

Americans spend most of their time indoors at home, but comprehensive characterization of in-home air pollution is limited by the cost and size of reference-quality monitors. We assembled small "Home Health Boxes" (HHBs) to measure indoor PM2.5, PM10, CO2, CO, NO2, and O3 concentrations using filter samplers and low-cost sensors. Nine HHBs were collocated with reference monitors in the kitchen of an occupied home in Fort Collins, Colorado, USA for 168 h while wildfire smoke impacted local air quality. When HHB data were interpreted using gas sensor manufacturers' calibrations, HHBs and reference monitors (a) categorized the level of each gaseous pollutant similarly (as either low, elevated, or high relative to air quality standards) and (b) both indicated that gas cooking burners were the dominant source of CO and NO2 pollution; however, HHB and reference O3 data were not correlated. When HHB gas sensor data were interpreted using linear mixed calibration models derived via collocation with reference monitors, root-mean-square error decreased for CO2 (from 408 to 58 ppm), CO (645 to 572 ppb), NO2 (22 to 14 ppb), and O3 (21 to 7 ppb); additionally, correlation between HHB and reference O3 data improved (Pearson's r increased from 0.02 to 0.75). Mean 168-h PM2.5 and PM10 concentrations derived from nine filter samples were 19.4 µg m-3 (6.1% relative standard deviation [RSD]) and 40.1 µg m-3 (7.6% RSD). The 168-h PM2.5 concentration was overestimated by PMS5003 sensors (median sensor/filter ratio = 1.7) and underestimated slightly by SPS30 sensors (median sensor/filter ratio = 0.91).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...