Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585977

RESUMO

Glycosylation affects many vital functions of organisms. Therefore, its surveillance is critical from basic science to biotechnology, including biopharmaceutical development and clinical diagnostics. However, conventional glycan structure analysis faces challenges with throughput and cost. Lectins offer an alternative approach for analyzing glycans, but they only provide glycan epitopes and not full glycan structure information. To overcome these limitations, we developed LeGenD, a lectin and AI-based approach to predict N-glycan structures and determine their relative abundance in purified proteins based on lectin-binding patterns. We trained the LeGenD model using 309 glycoprofiles from 10 recombinant proteins, produced in 30 glycoengineered CHO cell lines. Our approach accurately reconstructed experimentally-measured N-glycoprofiles of bovine Fetuin B and IgG from human sera. Explanatory AI analysis with SHapley Additive exPlanations (SHAP) helped identify the critical lectins for glycoprofile predictions. Our LeGenD approach thus presents an alternative approach for N-glycan analysis.

2.
Nat Commun ; 15(1): 173, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228619

RESUMO

Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.


Assuntos
Bothrops , Neurotoxinas , Camundongos , Animais , Humanos , Neurotoxinas/toxicidade , Bothrops asper , Anticorpos Facilitadores , Anticorpos Monoclonais/toxicidade
3.
Metab Eng ; 81: 273-285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145748

RESUMO

Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.


Assuntos
Redes e Vias Metabólicas , Biologia de Sistemas , Cricetinae , Animais , Células CHO , Cricetulus , Redes e Vias Metabólicas/genética , Proteínas
4.
Toxicon ; 234: 107307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783315

RESUMO

Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat snakebite envenoming.


Assuntos
Mordeduras de Serpentes , Animais , Humanos , Peçonhas , Anticorpos Monoclonais , Antivenenos/farmacologia , Serpentes , Fosfolipases A2 , Venenos de Serpentes
5.
Protein Sci ; 32(12): e4821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897425

RESUMO

Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.


Assuntos
Bacteriófagos , Histidina , Histidina/metabolismo , Antígenos/metabolismo , Imunoglobulina G/genética , Concentração de Íons de Hidrogênio , Bacteriófagos/metabolismo , Biblioteca de Peptídeos
6.
bioRxiv ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37205389

RESUMO

Understanding protein secretion has considerable importance in the biotechnology industry and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer protein secretion capabilities from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can be used to predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.

7.
Chemistry ; 28(15): e202200147, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35099088

RESUMO

Chemical modification of proteins has numerous applications, but it has been challenging to achieve the required high degree of selectivity on lysine amino groups. Recently, we described the highly selective acylation of proteins with an N-terminal Gly-His6 segment. This tag promoted acylation of the N-terminal Nα -amine resulting in stable conjugates. Herein, we report the peptide sequences Hisn -Lys-Hism , which we term Lys-His tags. In combination with simple acylating agents, they facilitate the acylation of the designated Lys Nϵ -amine under mild conditions and with high selectivity over native Lys residues. We show that the Lys-His tags, which are 7 to 10 amino acids in length and still act as conventional His tags, can be inserted in proteins at the C-terminus or in loops, thus providing high flexibility regarding the site of modification. Finally, the selective and efficient acylation of the therapeutic antibody Rituximab, pure or mixed with other proteins, demonstrates the scope of the Lys-His tag acylation method.


Assuntos
Lisina , Proteínas , Acilação , Sequência de Aminoácidos , Peptídeos/química
8.
ACS Omega ; 6(19): 12439-12458, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34056395

RESUMO

Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.

9.
Biotechnol Bioeng ; 118(2): 890-904, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169829

RESUMO

Despite their therapeutic potential, many protein drugs remain inaccessible to patients since they are difficult to secrete. Each recombinant protein has unique physicochemical properties and requires different machinery for proper folding, assembly, and posttranslational modifications (PTMs). Here we aimed to identify the machinery supporting recombinant protein secretion by measuring the protein-protein interaction (PPI) networks of four different recombinant proteins (SERPINA1, SERPINC1, SERPING1, and SeAP) with various PTMs and structural motifs using the proximity-dependent biotin identification (BioID) method. We identified PPIs associated with specific features of the secreted proteins using a Bayesian statistical model and found proteins involved in protein folding, disulfide bond formation, and N-glycosylation were positively correlated with the corresponding features of the four model proteins. Among others, oxidative folding enzymes showed the strongest association with disulfide bond formation, supporting their critical roles in proper folding and maintaining the ER stability. Knockdown of disulfide-isomerase PDIA4, a measured interactor with significance for SERPINC1 but not SERPINA1, led to the decreased secretion of SERPINC1, which relies on its extensive disulfide bonds, compared to SERPINA1, which has no disulfide bonds. Proximity-dependent labeling successfully identified the transient interactions supporting synthesis of secreted recombinant proteins and refined our understanding of key molecular mechanisms of the secretory pathway during recombinant protein production.


Assuntos
Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Glicosilação , Células HEK293 , Humanos , Dobramento de Proteína , Transporte Proteico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
10.
PLoS Comput Biol ; 16(12): e1008498, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351794

RESUMO

Chinese hamster ovary (CHO) cell lines are widely used in industry for biological drug production. During cell culture development, considerable effort is invested to understand the factors that greatly impact cell growth, specific productivity and product qualities of the biotherapeutics. While high-throughput omics approaches have been increasingly utilized to reveal cellular mechanisms associated with cell line phenotypes and guide process optimization, comprehensive omics data analysis and management have been a challenge. Here we developed CHOmics, a web-based tool for integrative analysis of CHO cell line omics data that provides an interactive visualization of omics analysis outputs and efficient data management. CHOmics has a built-in comprehensive pipeline for RNA sequencing data processing and multi-layer statistical modules to explore relevant genes or pathways. Moreover, advanced functionalities were provided to enable users to customize their analysis and visualize the output systematically and interactively. The tool was also designed with the flexibility to accommodate other types of omics data and thereby enabling multi-omics comparison and visualization at both gene and pathway levels. Collectively, CHOmics is an integrative platform for data analysis, visualization and management with expectations to promote the broader use of omics in CHO cell research.


Assuntos
Genômica , Internet , Metabolômica , Proteômica , Animais , Células CHO , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de RNA
11.
Metab Eng ; 61: 360-368, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710928

RESUMO

Achieving the predictable expression of heterologous genes in a production host has proven difficult. Each heterologous gene expressed in the same host seems to elicit a different host response governed by unknown mechanisms. Historically, most studies have approached this challenge by manipulating the properties of the heterologous gene through methods like codon optimization. Here we approach this challenge from the host side. We express a set of 45 heterologous genes in the same Escherichia coli strain, using the same expression system and culture conditions. We collect a comprehensive RNAseq set to characterize the host's transcriptional response. Independent Component Analysis of the RNAseq data set reveals independently modulated gene sets (iModulons) that characterize the host response to heterologous gene expression. We relate 55% of variation of the host response to: Fear vs Greed (16.5%), Metal Homeostasis (19.0%), Respiration (6.0%), Protein folding (4.5%), and Amino acid and nucleotide biosynthesis (9.0%). If these responses can be controlled, then the success rate with predicting heterologous gene expression should increase.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA-Seq , Transcriptoma , Escherichia coli/genética , Escherichia coli/metabolismo
12.
N Biotechnol ; 58: 45-54, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32502629

RESUMO

The proteins secreted by human tissues and blood cells, the secretome, are important both for the basic understanding of human biology and for identification of potential targets for future diagnosis and therapy. Here, a high-throughput mammalian cell factory is presented that was established to create a resource of recombinant full-length proteins covering the majority of those annotated as 'secreted' in humans. The full-length DNA sequences of each of the predicted secreted proteins were generated by gene synthesis, the constructs were transfected into Chinese hamster ovary (CHO) cells and the recombinant proteins were produced, purified and analyzed. Almost 1,300 proteins were successfully generated and proteins predicted to be secreted into the blood were produced with a success rate of 65%, while the success rates for the other categories of secreted proteins were somewhat lower giving an overall one-pass success rate of ca. 58%. The proteins were used to generate targeted proteomics assays and several of the proteins were shown to be active in a phenotypic assay involving pancreatic ß-cell dedifferentiation. Many of the proteins that failed during production in CHO cells could be rescued in human embryonic kidney (HEK 293) cells suggesting that a cell factory of human origin can be an attractive alternative for production in mammalian cells. In conclusion, a high-throughput protein production and purification system has been successfully established to create a unique resource of the human secretome.


Assuntos
Ensaios de Triagem em Larga Escala , Animais , Células CHO , Cricetulus , DNA/biossíntese , DNA/genética , Células HEK293 , Humanos , Proteômica , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
13.
Curr Res Biotechnol ; 2: 22-36, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32285041

RESUMO

Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach to model N-linked protein glycosylation as a Markov process. Our model leverages putative glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation.

14.
Nat Commun ; 11(1): 1908, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313013

RESUMO

Host cell proteins (HCPs) are process-related impurities generated during biotherapeutic protein production. HCPs can be problematic if they pose a significant metabolic demand, degrade product quality, or contaminate the final product. Here, we present an effort to create a "clean" Chinese hamster ovary (CHO) cell by disrupting multiple genes to eliminate HCPs. Using a model of CHO cell protein secretion, we predict that the elimination of unnecessary HCPs could have a non-negligible impact on protein production. We analyze the HCP content of 6-protein, 11-protein, and 14-protein knockout clones. These cell lines exhibit a substantial reduction in total HCP content (40%-70%). We also observe higher productivity and improved growth characteristics in specific clones. The reduced HCP content facilitates purification of a monoclonal antibody. Thus, substantial improvements can be made in protein titer and purity through large-scale HCP deletion, providing an avenue to increased quality and affordability of high-value biopharmaceuticals.


Assuntos
Engenharia Metabólica/métodos , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos , Células CHO , Cromatografia , Cricetulus , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rituximab , Biologia Sintética
15.
Sci Signal ; 12(609)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772123

RESUMO

The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.


Assuntos
Bases de Dados de Proteínas , Proteoma/metabolismo , Proteômica , Humanos
16.
Sci Rep ; 9(1): 8827, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222165

RESUMO

Viral contamination in biopharmaceutical manufacturing can lead to shortages in the supply of critical therapeutics. To facilitate the protection of bioprocesses, we explored the basis for the susceptibility of CHO cells to RNA virus infection. Upon infection with certain ssRNA and dsRNA viruses, CHO cells fail to generate a significant interferon (IFN) response. Nonetheless, the downstream machinery for generating IFN responses and its antiviral activity is intact in these cells: treatment of cells with exogenously-added type I IFN or poly I:C prior to infection limited the cytopathic effect from Vesicular stomatitis virus (VSV), Encephalomyocarditis virus (EMCV), and Reovirus-3 virus (Reo-3) in a STAT1-dependent manner. To harness the intrinsic antiviral mechanism, we used RNA-Seq to identify two upstream repressors of STAT1: Gfi1 and Trim24. By knocking out these genes, the engineered CHO cells exhibited activation of cellular immune responses and increased resistance to the RNA viruses tested. Thus, omics-guided engineering of mammalian cell culture can be deployed to increase safety in biotherapeutic protein production among many other biomedical applications.


Assuntos
Células CHO/virologia , Engenharia Genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Microbiologia Industrial , Animais , Biomarcadores , Cricetulus , Resistência a Medicamentos/imunologia , Engenharia Genética/métodos , Interferon Tipo I , Poli I-C/imunologia , Vírus de RNA/imunologia , Fator de Transcrição STAT1 , Transdução de Sinais , Replicação Viral
17.
Curr Res Biotechnol ; 1: 49-57, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32577618

RESUMO

Most therapeutic monoclonal antibodies in biopharmaceutical processes are produced in Chinese hamster ovary (CHO) cells. Technological advances have rendered the selection procedure for higher producers a robust protocol. However, information on molecular mechanisms that impart the property of hyper-productivity in the final selected clones is currently lacking. In this study, an IgG-producing industrial cell line and its methotrexate (MTX)-amplified progeny cell line were analyzed using transcriptomic, proteomic, phosphoproteomic, and chromatin immunoprecipitation (ChIP) techniques. Computational prediction of transcription factor binding to the transgene cytomegalovirus (CMV) promoter by the Transcription Element Search System and upstream regulator analysis of the differential transcriptomic data suggested increased in vivo CMV promoter-cAMP response element binding protein (CREB1) interaction in the higher producing cell line. Differential nuclear proteomic analysis detected 1.3-fold less CREB1 in the nucleus of the high productivity cell line compared with the parental cell line. However, the differential abundance of multiple CREB1 phosphopeptides suggested an increase in CREB1 activity in the higher producing cell line, which was confirmed by increased association of the CMV promotor with CREB1 in the high producer cell line. Thus, we show here that the nuclear proteome and phosphoproteome have an important role in regulating final productivity of recombinant proteins from CHO cells, and that CREB1 may play a role in transcriptional enhancement. Moreover, CREB1 phosphosites may be potential targets for cell engineering for increased productivity.

18.
mBio ; 8(1)2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28074024

RESUMO

To understand the role of glycosaminoglycans in bacterial cellular invasion, xylosyltransferase-deficient mutants of Chinese hamster ovary (CHO) cells were created using clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (CRISPR-cas9) gene targeting. When these mutants were compared to the pgsA745 cell line, a CHO xylosyltransferase mutant generated previously using chemical mutagenesis, an unexpected result was obtained. Bacterial invasion of pgsA745 cells by group B Streptococcus (GBS), group A Streptococcus, and Staphylococcus aureus was markedly reduced compared to the invasion of wild-type cells, but newly generated CRISPR-cas9 mutants were only resistant to GBS. Invasion of pgsA745 cells was not restored by transfection with xylosyltransferase, suggesting that an additional mutation conferring panresistance to multiple bacteria was present in pgsA745 cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit α2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-α2ß1γ1/laminin-α2ß2γ1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin α2 is important for cellular invasion by a number of bacterial pathogens. IMPORTANCE: Pathogenic bacteria penetrate host cellular barriers by attachment to extracellular matrix molecules, such as proteoglycans, laminins, and collagens, leading to invasion of epithelial and endothelial cells. Here, we show that cellular invasion by the human pathogens group B Streptococcus, group A Streptococcus, and Staphylococcus aureus depends on a specific domain of the laminin α2 subunit. This finding may provide new leads for the molecular pathogenesis of these bacteria and the development of novel antimicrobial drugs.


Assuntos
Endocitose , Interações Hospedeiro-Patógeno , Laminina/metabolismo , Staphylococcus aureus/fisiologia , Streptococcus agalactiae/fisiologia , Streptococcus pyogenes/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Deleção de Genes , Técnicas de Inativação de Genes , Teste de Complementação Genética , Laminina/genética , Análise de Sequência de DNA
19.
Biotechnol J ; 12(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27860290

RESUMO

Biosimilar drugs must closely resemble the pharmacological attributes of innovator products to ensure safety and efficacy to obtain regulatory approval. Glycosylation is one critical quality attribute that must be matched, but it is inherently difficult to control due to the complexity of its biogenesis. This usually implies that costly and time-consuming experimentation is required for clone identification and optimization of biosimilar glycosylation. Here, a computational method that utilizes a Markov model of glycosylation to predict optimal glycoengineering strategies to obtain a specific glycosylation profile with desired properties is described. The approach uses a genetic algorithm to find the required quantities to perturb glycosylation reaction rates that lead to the best possible match with a given glycosylation profile. Furthermore, the approach can be used to identify cell lines and clones that will require minimal intervention while achieving a glycoprofile that is most similar to the desired profile. Thus, this approach can facilitate biosimilar design by providing computational glycoengineering guidelines that can be generated with a minimal time and cost.


Assuntos
Biotecnologia/métodos , Cadeias de Markov , Animais , Medicamentos Biossimilares/metabolismo , Células CHO , Cricetulus , Glicosilação
20.
Cell Syst ; 3(5): 434-443.e8, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27883890

RESUMO

Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.


Assuntos
Genoma , Animais , Células CHO , Consenso , Cricetinae , Cricetulus , Humanos , Redes e Vias Metabólicas , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...