Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(6): e26685, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647042

RESUMO

Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses inter-individual heterogeneity in the multisystem ageing process. Using machine-learning regression models on the UK Biobank data set (N = 32,593, age range 44.6-82.3, mean age 64.1 years), we first estimated tissue-specific brain age for white and gray matter based on diffusion and T1-weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict 'body age'. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscle-fat infiltration were related to older-appearing body age compared to brain age. Conversely, higher hand-grip strength and muscle volume were related to a younger-appearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals.


Assuntos
Envelhecimento , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Masculino , Envelhecimento/fisiologia , Feminino , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Composição Corporal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Teorema de Bayes
2.
Hum Brain Mapp ; 45(3): e26631, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38379514

RESUMO

Aberrant brain network development represents a putative aetiological component in mental disorders, which typically emerge during childhood and adolescence. Previous studies have identified resting-state functional connectivity (RSFC) patterns reflecting psychopathology, but the generalisability to other samples and politico-cultural contexts has not been established. We investigated whether a previously identified cross-diagnostic case-control and autism spectrum disorder (ASD)-specific pattern of RSFC (discovery sample; aged 5-21 from New York City, USA; n = 1666) could be validated in a Norwegian convenience-based youth sample (validation sample; aged 9-25 from Oslo, Norway; n = 531). As a test of generalisability, we investigated if these diagnosis-derived RSFC patterns were sensitive to levels of symptom burden in both samples, based on an independent measure of symptom burden. Both the cross-diagnostic and ASD-specific RSFC pattern were validated across samples. Connectivity patterns were significantly associated with thematically appropriate symptom dimensions in the discovery sample. In the validation sample, the ASD-specific RSFC pattern showed a weak, inverse relationship with symptoms of conduct problems, hyperactivity and prosociality, while the cross-diagnostic pattern was not significantly linked to symptoms. Diagnosis-derived connectivity patterns in a developmental clinical US sample were validated in a convenience sample of Norwegian youth, however, they were not associated with mental health symptoms.


Assuntos
Transtorno do Espectro Autista , Humanos , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Carga de Sintomas , Encéfalo/diagnóstico por imagem , Noruega , Imageamento por Ressonância Magnética/métodos
3.
Dev Cogn Neurosci ; 62: 101271, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348146

RESUMO

The interplay between functional brain network maturation and psychopathology during development remains elusive. To establish the structure of psychopathology and its neurobiological mechanisms, mapping of both shared and unique functional connectivity patterns across developmental clinical populations is needed. We investigated shared associations between resting-state functional connectivity and psychopathology in children and adolescents aged 5-21 (n = 1689). Specifically, we used partial least squares (PLS) to identify latent variables (LV) between connectivity and both symptom scores and diagnostic information. We also investigated associations between connectivity and each diagnosis specifically, controlling for other diagnosis categories. PLS identified five significant LVs between connectivity and symptoms, mapping onto the psychopathology hierarchy. The first LV resembled a general psychopathology factor, followed by dimensions of internalising- externalising, neurodevelopment, somatic complaints, and thought problems. Another PLS with diagnostic data revealed one significant LV, resembling a cross-diagnostic case-control pattern. The diagnosis-specific PLS identified a unique connectivity pattern for autism spectrum disorder (ASD). All LVs were associated with distinct patterns of functional connectivity. These dimensions largely replicated in an independent sample (n = 420) from the same dataset, as well as to an independent cohort (n = 3504). This suggests that covariance in developmental functional brain networks supports transdiagnostic dimensions of psychopathology.


Assuntos
Transtorno do Espectro Autista , Mapeamento Encefálico , Adolescente , Criança , Humanos , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Psicopatologia , Pré-Escolar , Adulto Jovem
4.
Biol Psychiatry Glob Open Sci ; 3(2): 255-263, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124356

RESUMO

Background: Adolescence hosts a sharp increase in the incidence of mental disorders. The prodromal phases are often characterized by cognitive deficits that predate disease onset by several years. Characterization of cognitive performance in relation to normative trajectories may have value for early risk assessment and monitoring. Methods: Youth aged 8 to 21 years (N = 6481) from the Philadelphia Neurodevelopmental Cohort were included. Performance scores from a computerized neurocognitive battery were decomposed using principal component analysis, yielding a general cognitive score. Items reflecting various aspects of psychopathology from self-report questionnaires and collateral caregiver information were decomposed using independent component analysis, providing individual domain scores. Using normative modeling and Bayesian statistics, we estimated normative trajectories of cognitive function and tested for associations between cognitive deviance and psychopathological domain scores. In addition, we tested for associations with polygenic scores for mental and behavioral disorders often involving cognition, including schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, and Alzheimer's disease. Results: More negative normative cognitive deviations were associated with higher general psychopathology burden and domains reflecting positive and prodromal psychosis, attention problems, norm-violating behavior, and anxiety. In addition, better performance was associated with higher joint burden of depression, suicidal ideation, and negative psychosis symptoms. The analyses revealed no evidence for associations with polygenic scores. Conclusions: Our results show that cognitive performance is associated with general and specific domains of psychopathology in youth. These findings support the close links between cognition and psychopathology in youth and highlight the potential of normative modeling for early risk assessment.

6.
Dev Cogn Neurosci ; 60: 101219, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812678

RESUMO

BACKGROUND: Abnormalities in brain structure are shared across diagnostic categories. Given the high rate of comorbidity, the interplay of relevant behavioural factors may also cross these classic boundaries. METHODS: We aimed to detect brain-based dimensions of behavioural factors using canonical correlation and independent component analysis in a clinical youth sample (n = 1732, 64 % male, age: 5-21 years). RESULTS: We identified two correlated patterns of brain structure and behavioural factors. The first mode reflected physical and cognitive maturation (r = 0.92, p = .005). The second mode reflected lower cognitive ability, poorer social skills, and psychological difficulties (r = 0.92, p = .006). Elevated scores on the second mode were a common feature across all diagnostic boundaries and linked to the number of comorbid diagnoses independently of age. Critically, this brain pattern predicted normative cognitive deviations in an independent population-based sample (n = 1253, 54 % female, age: 8-21 years), supporting the generalisability and external validity of the reported brain-behaviour relationships. CONCLUSIONS: These results reveal dimensions of brain-behaviour associations across diagnostic boundaries, highlighting potent disorder-general patterns as the most prominent. In addition to providing biologically informed patterns of relevant behavioural factors for mental illness, this contributes to a growing body of evidence in favour of transdiagnostic approaches to prevention and intervention.


Assuntos
Transtornos Mentais , Humanos , Masculino , Adolescente , Feminino , Pré-Escolar , Criança , Adulto Jovem , Adulto , Transtornos Mentais/diagnóstico , Transtornos Mentais/epidemiologia , Transtornos Mentais/psicologia , Encéfalo , Comorbidade , Cognição , Comunicação
7.
Front Glob Womens Health ; 4: 1320640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38213741

RESUMO

Introduction: The menopause transition is associated with several cardiometabolic risk factors. Poor cardiometabolic health is further linked to microvascular brain lesions, which can be detected as white matter hyperintensities (WMHs) using T2-FLAIR magnetic resonance imaging (MRI) scans. Females show higher risk for WMHs post-menopause, but it remains unclear whether changes in cardiometabolic risk factors underlie menopause-related increase in brain pathology. Methods: In this study, we assessed whether cross-sectional measures of cardiometabolic health, including body mass index (BMI) and waist-to-hip ratio (WHR), blood lipids, blood pressure, and long-term blood glucose (HbA1c), as well as longitudinal changes in BMI and WHR, differed according to menopausal status at baseline in 9,882 UK Biobank females (age range 40-70 years, n premenopausal = 3,529, n postmenopausal = 6,353). Furthermore, we examined whether these cardiometabolic factors were associated with WMH outcomes at the follow-up assessment, on average 8.78 years after baseline. Results: Postmenopausal females showed higher levels of baseline blood lipids (HDL ß = 0.14, p < 0.001, LDL ß = 0.20, p < 0.001, triglycerides ß = 0.12, p < 0.001) and HbA1c (ß = 0.24, p < 0.001) compared to premenopausal women, beyond the effects of age. Over time, BMI increased more in the premenopausal compared to the postmenopausal group (ß = -0.08, p < 0.001), while WHR increased to a similar extent in both groups (ß = -0.03, p = 0.102). The change in WHR was however driven by increased waist circumference only in the premenopausal group. While the group level changes in BMI and WHR were in general small, these findings point to distinct anthropometric changes in pre- and postmenopausal females over time. Higher baseline measures of BMI, WHR, triglycerides, blood pressure, and HbA1c, as well as longitudinal increases in BMI and WHR, were associated with larger WMH volumes (ß range = 0.03-0.13, p ≤ 0.002). HDL showed a significant inverse relationship with WMH volume (ß = -0.27, p < 0.001). Discussion: Our findings emphasise the importance of monitoring cardiometabolic risk factors in females from midlife through the menopause transition and into the postmenopausal phase, to ensure improved cerebrovascular outcomes in later years.

8.
Neuroimage Clin ; 36: 103239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451350

RESUMO

The menopause transition involves changes in oestrogens and adipose tissue distribution, which may influence female brain health post-menopause. Although increased central fat accumulation is linked to risk of cardiometabolic diseases, adipose tissue also serves as the primary biosynthesis site of oestrogens post-menopause. It is unclear whether different types of adipose tissue play diverging roles in female brain health post-menopause, and whether this depends on lifetime oestrogen exposure, which can have lasting effects on the brain and body even after menopause. Using the UK Biobank sample, we investigated associations between brain characteristics and visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (ASAT) in 10,251 post-menopausal females, and assessed whether the relationships varied depending on length of reproductive span (age at menarche to age at menopause). To parse the effects of common genetic variation, we computed polygenic scores for reproductive span. The results showed that higher VAT and ASAT were both associated with higher grey and white matter brain age, and greater white matter hyperintensity load. The associations varied positively with reproductive span, indicating more prominent associations between adipose tissue and brain measures in females with a longer reproductive span. The effects were in general small, but could not be fully explained by genetic variation or relevant confounders. Our findings indicate that associations between abdominal adipose tissue and brain health post-menopause may partly depend on individual differences in cumulative oestrogen exposure during reproductive years, emphasising the complexity of neural and endocrine ageing processes in females.


Assuntos
Gordura Abdominal , Pós-Menopausa , Feminino , Humanos , Gordura Abdominal/diagnóstico por imagem , Menopausa , Encéfalo/diagnóstico por imagem , Estrogênios
9.
Dev Cogn Neurosci ; 58: 101173, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332329

RESUMO

Combining imaging modalities and metrics that are sensitive to various aspects of brain structure and maturation may help identify individuals that show deviations in relation to same-aged peers, and thus benefit early-risk-assessment for mental disorders. We used one timepoint multimodal brain imaging, cognitive, and questionnaire data from 1280 eight- to twenty-one-year-olds from the Philadelphia Neurodevelopmental Cohort. We estimated age-related gray and white matter properties and estimated individual deviation scores using normative modeling. Next, we tested for associations between the estimated deviation scores, and with psychopathology domain scores and cognition. More negative deviations in DTI-based fractional anisotropy (FA) and the first principal eigenvalue of the diffusion tensor (L1) were associated with higher scores on psychosis positive and prodromal symptoms and general psychopathology. A more negative deviation in cortical thickness (CT) was associated with a higher general psychopathology score. Negative deviations in global FA, surface area, L1 and CT were also associated with poorer cognitive performance. No robust associations were found between the deviation scores based on CT and DTI. The low correlations between the different multimodal magnetic resonance imaging-based deviation scores suggest that psychopathological burden in adolescence can be mapped onto partly distinct neurobiological features.


Assuntos
Transtornos Mentais , Substância Branca , Adolescente , Humanos , Substância Cinzenta/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Anisotropia
10.
Neuroimage ; 263: 119611, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070838

RESUMO

Psychiatric disorders are highly heritable and polygenic, and many have their peak onset in late childhood and adolescence, a period of tremendous changes. Although the neurodevelopmental antecedents of mental illness are widely acknowledged, research in youth population cohorts is still scarce, preventing our progress towards the early characterization of these disorders. We included 7,124 children (9-11 years old) from the Adolescent Brain and Cognitive Development Study to map the associations of structural and diffusion brain imaging with common genetic variants and polygenic scores for psychiatric disorders and educational attainment. We used principal component analysis to derive imaging components, and calculated their heritability. We then assessed the relationship of imaging components with genetic and clinical psychiatric risk with univariate models and Canonical correlation analysis (CCA). Most imaging components had moderate heritability. Univariate models showed limited evidence and small associations of polygenic scores with brain structure at this age. CCA revealed two significant modes of covariation. The first mode linked higher polygenic scores for educational attainment with less externalizing problems and larger surface area. The second mode related higher polygenic scores for schizophrenia, bipolar disorder, and autism spectrum disorder to higher global cortical thickness, smaller white matter volumes of the fornix and cingulum, larger medial occipital surface area and smaller surface area of lateral and medial temporal regions. While cross-validation suggested limited generalizability, our results highlight the potential of multivariate models to better understand the transdiagnostic and distributed relationships between mental health and brain structure in late childhood.


Assuntos
Transtorno do Espectro Autista , Saúde Mental , Adolescente , Humanos , Criança , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Escolaridade , Neuroimagem
11.
Hum Brain Mapp ; 43(12): 3759-3774, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460147

RESUMO

Cardiometabolic risk (CMR) factors are associated with accelerated brain aging and increased risk for sex-dimorphic illnesses such as Alzheimer's disease (AD). Yet, it is unknown how CMRs interact with sex and apolipoprotein E-ϵ4 (APOE4), a known genetic risk factor for AD, to influence brain age across different life stages. Using age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK Biobank participants, we investigated whether associations between white matter Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF%), and APOE4 status varied (i) between males and females, (ii) according to age at menopause in females, and (iii) across different age groups in males and females. We report sex differences in associations between BAG and all three CMRs, with stronger positive associations among males compared to females. Independent of APOE4 status, higher BAG (older brain age relative to chronological age) was associated with greater BMI, WHR, and BF% in males, whereas in females, higher BAG was associated with greater WHR, but not BMI and BF%. These divergent associations were most prominent within the oldest group of females (66-81 years), where greater BF% was linked to lower BAG. Earlier menopause transition was associated with higher BAG, but no interactions were found with CMRs. In conclusion, the findings point to sex- and age-specific associations between CMRs and brain age. Incorporating sex as a factor of interest in studies addressing CMR may promote sex-specific precision medicine, consequently improving health care for both males and females.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Substância Branca , Fatores Etários , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Bancos de Espécimes Biológicos , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Fatores de Risco , Reino Unido/epidemiologia , Substância Branca/diagnóstico por imagem
12.
Transl Psychiatry ; 12(1): 161, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422097

RESUMO

Cortical microstructure is influenced by circadian rhythm and sleep deprivation, yet the precise underpinnings of these effects remain unclear. The ratio between T1-weighted and T2-weighted magnetic resonance images (T1w/T2w ratio) has been linked to myelin levels and dendrite density and may offer novel insight into the intracortical microstructure of the sleep deprived brain. Here, we examined intracortical T1w/T2w ratio in 41 healthy young adults (26 women) before and after 32 h of either sleep deprivation (n = 18) or a normal sleep-wake cycle (n = 23). Linear models revealed significant group differences in T1w/T2w ratio change after 32 h in four clusters, including bilateral effects in the insular, cingulate, and superior temporal cortices, comprising regions involved in attentional, auditory and pain processing. Across clusters, the sleep deprived group showed an increased T1w/T2w ratio, while the normal sleep-wake group exhibited a reduced ratio. These changes were not explained by in-scanner head movement, and 95% of the effects across clusters remained significant after adjusting for cortical thickness and hydration. Compared with a normal sleep-wake cycle, 32 h of sleep deprivation yields intracortical T1w/T2w ratio increases. While the intracortical changes detected by this study could reflect alterations in myelin or dendritic density, or both, histological analyses are needed to clarify the precise underlying cortical processes.


Assuntos
Imageamento por Ressonância Magnética , Privação do Sono , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Bainha de Mielina/patologia , Privação do Sono/diagnóstico por imagem , Adulto Jovem
13.
Hum Brain Mapp ; 43(2): 700-720, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626047

RESUMO

The structure and integrity of the ageing brain is interchangeably linked to physical health, and cardiometabolic risk factors (CMRs) are associated with dementia and other brain disorders. In this mixed cross-sectional and longitudinal study (interval mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53% women), we investigated CMRs and health indicators including anthropometric measures, lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We performed tissue specific brain age prediction using machine learning and performed Bayesian multilevel modeling to assess changes in each CMR over time, their respective association with brain age gap (BAG), and their interaction effects with time and age on the tissue-specific BAGs. The results showed credible associations between DTI-based BAG and blood levels of phosphate and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure, smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade inflammation). Longitudinal evidence supported interactions between both BAGs and waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and smoking, indicating accelerated ageing in people with higher cardiometabolic risk (smoking, higher blood pressure, and WHR). The results demonstrate that cardiometabolic risk factors are associated with brain ageing. While randomized controlled trials are needed to establish causality, our results indicate that public health initiatives and treatment strategies targeting modifiable cardiometabolic risk factors may also improve risk trajectories and delay brain ageing.


Assuntos
Senilidade Prematura , Envelhecimento , Encéfalo , Fatores de Risco Cardiometabólico , Adulto , Fatores Etários , Envelhecimento/sangue , Envelhecimento/patologia , Envelhecimento/fisiologia , Senilidade Prematura/sangue , Senilidade Prematura/diagnóstico por imagem , Senilidade Prematura/patologia , Senilidade Prematura/fisiopatologia , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiologia , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade
14.
Hum Brain Mapp ; 42(13): 4372-4386, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118094

RESUMO

Maternal brain adaptations occur in response to pregnancy, but little is known about how parity impacts white matter and white matter ageing trajectories later in life. Utilising global and regional brain age prediction based on multi-shell diffusion-weighted imaging data, we investigated the association between previous childbirths and white matter brain age in 8,895 women in the UK Biobank cohort (age range = 54-81 years). The results showed that number of previous childbirths was negatively associated with white matter brain age, potentially indicating a protective effect of parity on white matter later in life. Both global white matter and grey matter brain age estimates showed unique contributions to the association with previous childbirths, suggesting partly independent processes. Corpus callosum contributed uniquely to the global white matter association with previous childbirths, and showed a stronger relationship relative to several other tracts. While our findings demonstrate a link between reproductive history and brain white matter characteristics later in life, longitudinal studies are required to establish causality and determine how parity may influence women's white matter trajectories across the lifespan.


Assuntos
Envelhecimento , Imagem de Tensor de Difusão/métodos , Paridade , Substância Branca/anatomia & histologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
15.
Neuroimage ; 226: 117540, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186715

RESUMO

Sleep deprivation influences several critical functions, yet how it affects human brain white matter (WM) is not well understood. The aim of the present work was to investigate the effect of 32 hours of sleep deprivation on WM microstructure compared to changes observed in a normal sleep-wake cycle (SWC). To this end, we utilised diffusion weighted imaging (DWI) including the diffusion tensor model, diffusion kurtosis imaging and the spherical mean technique, a novel biophysical diffusion model. 46 healthy adults (23 sleep deprived vs 23 with normal SWC) underwent DWI across four time points (morning, evening, next day morning and next day afternoon, after a total of 32 hours). Linear mixed models revealed significant group × time interaction effects, indicating that sleep deprivation and normal SWC differentially affect WM microstructure. Voxel-wise comparisons showed that these effects spanned large, bilateral WM regions. These findings provide important insight into how sleep deprivation affects the human brain.


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Privação do Sono/patologia , Substância Branca/patologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Sono/fisiologia , Privação do Sono/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
16.
Neuroimage ; 212: 116682, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114147

RESUMO

Recently, several magnetic resonance imaging (MRI) studies have reported time-of-day effects on brain structure and function. Due to the possibility that time-of-day effects reflect mechanisms of circadian regulation, the aim of this prospective study was to assess these effects while under strict experimental control of variables that might influence biological clocks, such as caffeine intake and exposure to blue-emitting light. In addition, the current study assessed whether time-of-day effects were driven by changes to extracellular space, by including estimations of non-Gaussian diffusion metrics obtained from diffusion kurtosis imaging, white matter tract integrity and the spherical mean technique, in addition to conventional diffusion tensor imaging -derived parameters. Participants were 47 healthy adults who underwent diffusion-weighted imaging in the morning and evening of the same day. Morning and evening scans were compared using voxel-wise tract based spatial statistics and permutation testing. A day of wakefulness was associated with widespread increases in fractional anisotropy, indices of kurtosis and indices of the axonal water fraction. In addition, wakefulness was associated with widespread decreases in radial diffusivity, both in the single compartment and in extra-axonal space. These results suggest that an increase in the intra-axonal space relative to the extra-axonal volume underlies time-of-day effects in human white matter, which is in line with activity-induced reductions to the extracellular volume. These findings provide important insight into possible mechanisms driving time-of-day effects in MRI.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética/métodos , Espaço Extracelular , Vigília , Substância Branca , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...