Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 88(7): 2960-2967, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37249091

RESUMO

Penicillium digitatum and Penicillium italicum are the main causal agents of postharvest diseases in lemon. Over the last decades, the appearance of isolates resistant to the main commercial fungicides has been considered one of the most serious problems for the citrus industry. In this work, potassium sorbate (KS) was evaluated as an alternative to chemical fungicides to control postharvest diseases caused by Penicillium isolates resistant to imazalil, thiabendazol, and pyrimethanil. In vitro assays showed that 1% KS inhibited conidia germination and mycelial growth of sensitive and resistant P. digitatum and P. italicum isolates, being this effect stronger at pH 5 than at pH 9. In curative treatments, the immersion of inoculated lemons in 1% KS aqueous solution for 30 s reduced green and blue molds incidences by around 80%. No wound protection effect was observed when wounded lemons were immersed in 3% salt solution before inoculation. Noteworthy, the inclusion of KS in a commercial wax coating effectively controlled green and blue molds, even in decays caused by fungicide resistance isolates. Together, results encourage the use of KS in lemon postharvest treatments to contribute to the management of resistant strains, which represent a major challenge in packinghouses worldwide. PRACTICAL APPLICATION: The use of KS in citrus postharvest treatments would help producers to reduce spoilage caused by Penicillium fungicide-resistant strains. The inclusion of this generally recognized as safe compound in wax coatings improves its persistence on the fruit surface, keeping product quality during long-term overseas transport. In sum, KS constitutes an affordable and eco-friendly option for controlling postharvest molds in lemon fruit.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , Fungicidas Industriais/farmacologia , Ácido Sórbico/farmacologia , Conservação de Alimentos/métodos , Citrus/química , Fungos , Frutas/química
2.
J Sci Food Agric ; 101(9): 3613-3619, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33275277

RESUMO

BACKGROUND: Phytophthora spp., soil-borne oomycetes, cause brown rot (BR) on postharvest lemons. The management of this disease is based on cultural practices and chemical control using inorganic salts of limited efficacy. In the search for new alternatives, the aim of this work was to evaluate the effect of low-toxicity compounds to inhibit the growth of P. citrophthora and to control BR disease on lemons. Sodium bicarbonate, potassium sorbate, polyhexamethylene guanidine, Ascophyllum nodosum extract and a formulation containing phosphite salts plus A. nodosum (P+An) were evaluated. RESULTS: All tested products inhibited mycelial growth, sporangia formation and zoospore germination of P. citrophthora in vitro. In postharvest applications on artificially inoculated lemons, only P+An exhibited a BR curative effect, with incidence reduction of around 60%. When this formulation was applied in field treatments, BR incidence was reduced by 40% on lemons harvested and inoculated up to 30 days post application. CONCLUSION: Our results demonstrate the in vitro direct anti-oomycete effect of low-toxicity compounds and the in vivo efficacy of P+An formulation to control BR, encouraging the incorporation of the latter in the management of citrus BR. © 2020 Society of Chemical Industry.


Assuntos
Ascophyllum/química , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Frutas/microbiologia , Guanidinas/farmacologia , Phytophthora/crescimento & desenvolvimento , Bicarbonato de Sódio/farmacologia , Ácido Sórbico/farmacologia
3.
Food Microbiol ; 76: 128-134, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166133

RESUMO

Citrus green mold, a postharvest disease caused by Penicillium digitatum, provokes important economic losses on lemon production. Here, the effectiveness of polyhexamethylene guanidine (PHMG) to inhibit P. digitatum growth and to control green mold on artificially infected lemons was evaluated. At sublethal concentrations, PHMG inhibited conidia germination and infectivity (5 mg L-1), and mycelial growth (50 mg L-1). Viability of conidia was completely suppressed by treatment with 500 mg L-1 PHMG. In this condition, membrane integrity loss, cell wall disruption and ultrastructural alterations were detected, as well as conidia distortion, deformation and collapse. In artificially inoculated lemons, a 30 s-immersion in 500 mg L-1 PHMG completely inhibited green mold. PHMG also exhibited a high disinfectant activity, even in the presence of 1% organic matter, with a better performance than the standard NaClO disinfectant. In addition, 500 mg L-1 PHMG protected wounds against infection. Taken together, our results indicate that PHMG is a promising fungicide for the postharvest control of green mold in lemon packinghouses.


Assuntos
Citrus/microbiologia , Desinfetantes/farmacologia , Fungicidas Industriais/farmacologia , Guanidinas/farmacologia , Penicillium/efeitos dos fármacos , Citrus/efeitos dos fármacos , Conservação de Alimentos/métodos , Frutas/efeitos dos fármacos , Frutas/microbiologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Penicillium/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos
4.
Front Microbiol ; 8: 347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326067

RESUMO

Phytopathogenic fungi responsible for post-harvest diseases on fruit and vegetables cause important economic losses. We have previously reported that harmol (1-methyl-9H-pyrido[3,4-b]indol-7-ol) is active against the causal agents of green and gray molds Penicillium digitatum and Botrytis cinerea, respectively. Here, antifungal activity of harmol was characterized in terms of pH dependency and conidial targets; also photodynamic effects of UVA irradiation on the antimicrobial action were evaluated. Harmol was able to inhibit the growth of both post-harvest fungal disease agents only in acidic conditions (pH 5), when it was found in its protonated form. Conidia treated with harmol exhibited membrane integrity loss, cell wall disruption, and cytoplasm disorganization. All these deleterious effects were more evident for B. cinerea in comparison to P. digitatum. When conidial suspensions were irradiated with UVA in the presence of harmol, antimicrobial activity against both pathogens was enhanced, compared to non-irradiated conditions. B. cinerea exhibited a high intracellular production of reactive oxygen species (ROS) when was incubated with harmol in irradiated and non-irradiated treatments. P. digitatum showed a significant increase in ROS accumulation only when treated with photoexcited harmol. The present work contributes to unravel the antifungal activity of harmol and its photoexcited counterpart against phytopathogenic conidia, focusing on ROS accumulation which could account for damage on different cellular targets.

5.
Food Microbiol ; 62: 9-14, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889171

RESUMO

ß-carbolines (ßCs) are alkaloids widely distributed in nature that have demonstrated antimicrobial properties. Here, we tested in vitro six ßCs against Penicillium digitatum and Botrytis cinerea, causal agents of postharvest diseases on fruit and vegetables. Full aromatic ßCs (harmine, harmol, norharmane and harmane) exhibited a marked inhibitory effect on conidia germination at concentrations between 0.5 and 1 mM, while dihydro-ßCs (harmalina and harmalol) only caused germination delay. Harmol showed the highest inhibitory effect on both fungal pathogens. After 24 h of exposure to 1 mM harmol, conidia revealed a severe cellular damage, exhibiting disorganized cytoplasm and thickened cell wall. Harmol antimicrobial effect was fungicidal on B. cinerea, while it was fungistatic on P. digitatum. Conidia membrane permeabilization was detected in treatments with harmol at sub-inhibitory and inhibitory concentrations, for both pathogens. In addition, residual infectivity of P. digitatum on lemons and B. cinerea on blueberries was significantly reduced after exposure to this alkaloid. It also inhibited mycelial growth, preventing sporulation at the highest concentration tested. These results indicate that harmol might be a promising candidate as a new antifungal molecule to control causal agents of fruit diseases.


Assuntos
Botrytis/efeitos dos fármacos , Carbolinas/farmacologia , Fungicidas Industriais/farmacologia , Penicillium/efeitos dos fármacos , Botrytis/citologia , Botrytis/ultraestrutura , Citrus/microbiologia , Frutas/microbiologia , Germinação/efeitos dos fármacos , Harmina/análogos & derivados , Harmina/farmacologia , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Penicillium/citologia , Penicillium/ultraestrutura , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
6.
Biometals ; 24(5): 827-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21390523

RESUMO

Copper is both an essential nutrient and a toxic element able to catalyze free radicals formation which damage lipids and proteins. Although the available copper redox species in aerobic environment is Cu(II), proteins that participate in metal homeostasis use Cu(I). With isolated Escherichia coli membranes, we have previously shown that electron flow through the respiratory chain promotes cupric ions reduction by NADH dehydrogenase-2 and quinones. Here, we determined Cu(II)-reductase activity by whole cells using strains deficient in these respiratory chain components. Measurements were done by the appearance of Cu(I) in the supernatants of cells exposed to sub-lethal Cu(II) concentrations. In the absence of quinones, the Cu(II)-reduction rate decreased ~70% in respect to the wild-type strain, while this diminution was about 85% in a strain lacking both NDH-2 and quinones. The decrease was ~10% in the absence of only NDH-2. In addition, we observed that quinone deficient strains failed to grow in media containing either excess or deficiency of copper, as we have described for NDH-2 deficient mutants. Thus, the Cu(II)-reduction by E. coli intact cells is mainly due to quinones and to a lesser extent to NDH-2, in a quinone-independent way. To our knowledge, this is the first in vivo demonstration of the involvement of E. coli respiratory components in the Cu(II)-reductase activity which contributes to the metal homeostasis.


Assuntos
Cobre/metabolismo , Transporte de Elétrons , Escherichia coli/citologia , Escherichia coli/metabolismo , NADH Desidrogenase/metabolismo , Membrana Celular/metabolismo , Escherichia coli/química , Ferro/metabolismo , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Oxirredução , Oxirredutases/metabolismo , Quinonas/metabolismo
7.
Arch Biochem Biophys ; 505(2): 155-9, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20933494

RESUMO

Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a membrane-bound flavoprotein. Bioinformatics approaches suggested the involvement of NDH-2 C-terminal region in membrane anchorage. Here, we demonstrated that NDH-2 is a peripheral membrane protein and that its predicted C-terminal amphipathic Arg390-Ala406 helix is sufficient to bind the protein to lipid membranes. Additionally, a cytosolic NDH-2 protein (Trun-3), lacking the last 43 aminoacids, was purified and characterized. FAD cofactor was absent in purified Trun-3. Upon the addition of FAD, Trun-3 maximum velocity was similar to native NDH-2 rate with ferricyanide and MTT acceptors. However, Trun-3 activity was around 5-fold lower with quinones. No significant difference in K(m) values was observed for both enzymes. For the first time, an active and water soluble NDH-2 was obtained, representing a major improvement for structural/functional characterizations.


Assuntos
Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Interações Hidrofóbicas e Hidrofílicas , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Sequência de Aminoácidos , Cinética , Dados de Sequência Molecular , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Estrutura Secundária de Proteína , Transporte Proteico , Deleção de Sequência , Solubilidade , Água/química
8.
FEMS Microbiol Lett ; 284(1): 76-83, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18492062

RESUMO

Escherichia coli NADH dehydrogenase-2 (NDH-2) is a primary dehydrogenase in aerobic respiration that shows cupric-reductase activity. The enzyme is encoded by ndh, which is highly regulated by global transcription factors. It was described that the gene is expressed in the exponential growth phase and repressed in late stationary phase. We report the maintenance of NDH-2 activity and ndh expression in the stationary phase when cells were grown in media containing at least 37 mM phosphate. Gene regulation was independent of RpoS and other transcription factors described to interact with the ndh promoter. At this critical phosphate concentration, cell viability, oxygen consumption rate, and NADH/NAD+ ratio were maintained in the stationary phase. These physiological parameters gradually changed, but NDH-2 activity remained high for up to 94 h. Phosphate seems to trigger an internal signal in the stationary phase mediated by systems not yet described.


Assuntos
Transporte de Elétrons , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , NADH Desidrogenase/biossíntese , Fosfatos/metabolismo , Aerobiose , Fusão Gênica Artificial , Proteínas de Bactérias/metabolismo , Escherichia coli/química , Expressão Gênica , Genes Reporter , Viabilidade Microbiana , NAD/metabolismo , Oxigênio/metabolismo , Piridinas/análise , Fator sigma/metabolismo , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
9.
Arch Biochem Biophys ; 451(1): 1-7, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16759635

RESUMO

NADH dehydrogenase-2 (NDH-2) from Escherichia coli respiratory chain is a membrane-bound cupric-reductase encoded by ndh gene. Here, we report that the respiratory system of a ndh deficient strain suffered a faster inactivation than that of the parental strain in the presence of tert-butyl hydroperoxide due to endogenous copper. The inactivation was similar for both strains when copper concentration increased in the culture media. Furthermore, several ndh deficient mutants grew less well than the corresponding parental strains in media containing either high or low copper concentrations. A mutant strain complemented with ndh gene almost recovered the parental phenotype for growing in copper limitation or excess. Then, NDH-2 gives the bacteria advantages to diminish the susceptibility of the respiratory chain to damaging effects produced by copper and hydroperoxides and to survive in extreme copper conditions. These results suggest that NDH-2 contributes in the bacterial oxidative protection and in the copper homeostasis.


Assuntos
Cobre/toxicidade , Escherichia coli/efeitos dos fármacos , Homeostase/efeitos dos fármacos , NADH Desidrogenase/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/fisiologia , terc-Butil Hidroperóxido/toxicidade , Cobre/metabolismo , Meios de Cultura , Relação Dose-Resposta a Droga , Transporte de Elétrons/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Homeostase/fisiologia , Membranas/enzimologia , Mutação , NADH Desidrogenase/metabolismo , Estresse Oxidativo/fisiologia , Oxirredutases/metabolismo , Fenótipo , Fatores de Tempo , terc-Butil Hidroperóxido/metabolismo
10.
Anal Biochem ; 307(1): 105-9, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12137786

RESUMO

In this paper we report the up to now ignored fluorescence properties of the specific Cu(I)-chelator bathocuproine disulfonate and their application in assays of total copper and Cu(I). The method is based on the linear quenching of the bathocuproine disulfonate emission at 770 nm (lambda(ex)580 nm) by increasing concentrations of Cu(I), at pH 7.5. Copper concentrations as low as 0.1 microM can be determined. Other metal ions (iron, manganese, zinc, cadmium, cobalt, nickel) do not interfere. The procedure for total copper determination in proteins includes HCl treatment to release the copper, neutralization to pH 7.5 in the presence of citrate to stabilize the copper, and reduction of the copper to Cu(I) by ascorbate in the presence of the chelator. This assay gave results coincident with the analysis by atomic absorption spectroscopy in two selected proteins. In addition, conditions are described (omitting HCl treatment and reduction by ascorbate) for direct measurement of Cu(I) in native proteins, as illustrated for the Escherichia coli NADH dehydrogenase-2. Data show that the fluorometric assays described in this paper are simple and convenient procedures for total copper and direct Cu(I) quantification in determined biological samples.


Assuntos
Cobre/análise , Compostos Organometálicos/química , Fenantrolinas/química , Animais , Sítios de Ligação , Bovinos , Quelantes/química , Eritrócitos/enzimologia , Escherichia coli/enzimologia , Fluorescência , Ácido Clorídrico/metabolismo , Indicadores e Reagentes , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Oxirredução , Fenantrolinas/metabolismo , Espectrofotometria Atômica , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...