Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(21): 9255-9264, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32931296

RESUMO

Semiconductors assembled from colloidal nanocrystals (NCs) are often described in the same terms as their single-crystalline counterparts with references to conduction and valence band edges, doping densities, and electronic defects; however, how and why semiconductor properties manifest in these bottom-up fabricated thin films can be fundamentally different. In this Perspective, we describe the factors that determine the electronic structure in colloidal NC-based semiconductors, and comment on approaches for measuring or calculating this electronic structure. Finally, we discuss future directions for these semiconductors and highlight their potential to bridge the divide between localized quantum effects and long-range transport in thin films.

2.
Nat Commun ; 11(1): 2852, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503965

RESUMO

The potential of semiconductors assembled from nanocrystals has been demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectrics, and phase change memory cells. Despite the commercial success of nanocrystal quantum dots as optical absorbers and emitters, applications involving charge transport through nanocrystal semiconductors have eluded exploitation due to the inability to predictively control their electronic properties. Here, we perform large-scale, ab initio simulations to understand carrier transport, generation, and trapping in strongly confined nanocrystal quantum dot-based semiconductors from first principles. We use these findings to build a predictive model for charge transport in these materials, which we validate experimentally. Our insights provide a path for systematic engineering of these semiconductors, which in fact offer previously unexplored opportunities for tunability not achievable in other semiconductor systems.

3.
Nano Lett ; 20(6): 4169-4176, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32343585

RESUMO

The miniaturization of mid-infrared optical gas sensors has great potential to make the "fingerprint region" between 2 and 10 µm accessible to a variety of cost-sensitive applications ranging from medical technology to atmospheric sensing. Here we demonstrate a gas sensor concept that achieves a 30-fold reduction in absorption volume compared to conventional gas sensors by using plasmonic metamaterials as on-chip optical filters. Integrating metamaterials into both the emitter and the detector cascades their individual filter functions, yielding a narrowband spectral response tailored to the absorption band of interest, here CO2. Simultaneously, the metamaterials' angle-independence is maintained, enabling an optically efficient, millimeter-scale cavity. With a CO2 sensitivity of 22.4 ± 0.5 ppm·Hz-0.5, the electrically driven prototype already performs at par with much larger commercial devices while consuming 80% less energy per measurement. The all-metamaterial sensing concept offers a path toward more compact and energy-efficient mid-infrared gas sensors without trade-offs in sensitivity or robustness.

4.
Nat Commun ; 10(1): 4236, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530815

RESUMO

Phonon engineering of solids enables the creation of materials with tailored heat-transfer properties, controlled elastic and acoustic vibration propagation, and custom phonon-electron and phonon-photon interactions. These can be leveraged for energy transport, harvesting, or isolation applications and in the creation of novel phonon-based devices, including photoacoustic systems and phonon-communication networks. Here we introduce nanocrystal superlattices as a platform for phonon engineering. Using a combination of inelastic neutron scattering and modeling, we characterize superlattice-phonons in assemblies of colloidal nanocrystals and demonstrate that they can be systematically engineered by tailoring the constituent nanocrystals, their surfaces, and the topology of superlattice. This highlights that phonon engineering can be effectively carried out within nanocrystal-based devices to enhance functionality, and that solution processed nanocrystal assemblies hold promise not only as engineered electronic and optical materials, but also as functional metamaterials with phonon energy and length scales that are unreachable by traditional architectures.

5.
J Chem Phys ; 151(24): 241104, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893923

RESUMO

Nanocrystal-based solar cells are promising candidates for next generation photovoltaic applications; however, the most recent improvements to the device chemistry and architecture have been mostly trial-and-error based advancements. Due to complex interdependencies among parameters, determining factors that limit overall solar cell efficiency are not trivial. Furthermore, many of the underlying chemical and physical parameters of nanocrystal-based solar cells have only recently been understood and quantified. Here, we show that this new understanding of interfaces, transport, and origin of trap states in nanocrystal-based semiconductors can be integrated into simulation tools, based on 1D drift-diffusion models. Using input parameters measured in independent experiments, we find excellent agreement between experimentally measured and simulated PbS nanocrystal solar cell behavior without having to fit any parameters. We then use this simulation to understand the impact of interfaces, charge carrier mobility, and trap-assisted recombination on nanocrystal performance. We find that careful engineering of the interface between the nanocrystals and the current collector is crucial for an optimal open-circuit voltage. We also show that in the regime of trap-state densities found in PbS nanocrystal solar cells (∼1017 cm-3), device performance exhibits strong dependence on the trap state density, explaining the sensitivity of power conversion efficiency to small changes in nanocrystal synthesis and nanocrystal thin-film deposition that has been reported in the literature. Based on these findings, we propose a systematic approach to nanocrystal solar cell optimization. Our method for incorporating parameters into simulations presented and validated here can be adopted to speed up the understanding and development of all types of nanocrystal-based solar cells.

6.
J Phys Chem Lett ; 9(24): 7165-7172, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30525647

RESUMO

In engineering a high-performance semiconductor device, understanding of the Fermi level position is critical. Here, we demonstrate that open-circuit potential (OCP) measurements can be used to quantify the Fermi level in nanocrystal thin films in situ during their solution-based fabrication. We use this method to study the influence of (1) a metal contact and (2) nanocrystal surface termination on the Fermi level of the nanocrystal film, and find that oxidization or reduction of the nanocrystals as well as surface terminations with dipoles can be used to tune the Fermi level over large energy ranges. Finally, to emphasize the compatibility of the technique with device fabrication, we show that we can use blends of ligands to design the Fermi level landscape in a nanocrystal film. Our work highlights that OCP measurements can be used to gain insight into existing device operation and direct further optimization of optoelectronic devices.

7.
Chem Mater ; 30(17): 6134-6143, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30270986

RESUMO

Phase-change memory materials refer to a class of materials that can exist in amorphous and crystalline phases with distinctly different electrical or optical properties, as well as exhibit outstanding crystallization kinetics and optimal phase transition temperatures. This paper focuses on the potential of colloids as phase-change memory materials. We report a novel synthesis for amorphous GeTe nanoparticles based on an amide-promoted approach that enables accurate size control of GeTe nanoparticles between 4 and 9 nm, narrow size distributions down to 9-10%, and synthesis upscaling to reach multigram chemical yields per batch. We then quantify the crystallization phase transition for GeTe nanoparticles, employing high-temperature X-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. We show that GeTe nanoparticles crystallize at higher temperatures than the bulk GeTe material and that crystallization temperature increases with decreasing size. We can explain this size-dependence using the entropy of crystallization model and classical nucleation theory. The size-dependences quantified here highlight possible benefits of nanoparticles for phase-change memory applications.

8.
J Phys Chem Lett ; 9(6): 1384-1392, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29485880

RESUMO

Use of nanocrystal thin films as active layers in optoelectronic devices requires tailoring of their electronic band structure. Here, we demonstrate energy-resolved electrochemical impedance spectroscopy (ER-EIS) as a method to quantify the electronic structure in nanocrystal thin films. This technique is particularly well-suited for nanocrystal-based thin films as it allows for in situ assessment of electronic structure during solution-based deposition of the thin film. Using well-studied lead sulfide nanocrystals as an example, we show that ER-EIS can be used to probe the energy position and number density of defect or dopant states as well as the modification of energy levels in nanocrystal solids that results through the exchange of surface ligands. This work highlights that ER-EIS is a sensitive and fast method to measure the electronic structure of nanocrystal thin films and enables their optimization in optoelectronic devices.

9.
Nature ; 531(7596): 618-22, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26958836

RESUMO

Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10-13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon processes permits the rational selection of nanomaterials, their surface treatments, and the design of devices incorporating them.

10.
Nano Lett ; 13(11): 5284-8, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24164600

RESUMO

We implement three complementary techniques to quantify the number, energy, and electronic properties of trap states in nanocrystal (NC)-based devices. We demonstrate that, for a given technique, the ability to observe traps depends on the Fermi level position, highlighting the importance of a multitechnique approach that probes trap coupling to both the conduction and the valence bands. We then apply our protocol for characterizing traps to quantitatively explain the measured performances of PbS NC-based solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...