Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
ArXiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38013887

RESUMO

Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.

4.
Bioessays ; 45(12): e2300139, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890275

RESUMO

The dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein-protein interactions and signal transduction pathways. To maintain membrane integrity, sense-and-response systems monitor and adjust membrane lipid composition to the ever-changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin-proteasome system in monitoring and maintaining membrane lipid composition. We focus on the ER-resident RNF145 E3 ubiquitin ligase, its role in regulating adiponectin receptor 2 (ADIPOR2), its lipid hydrolase substrate, and the broader implications for understanding the homeostatic processes that fine-tune cellular membrane composition.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Lipídeos de Membrana
5.
Nat Commun ; 14(1): 4816, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558666

RESUMO

Cholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown. Here, we identify Sterol Regulatory Element Binding Protein 2 (SREBP2), the key transcription factor driving sterol production in mammals, as an oxygen-sensitive regulator of cholesterol synthesis. SREBP2 degradation in hypoxia overrides the normal sterol-sensing response, and is HIF independent. We identify MARCHF6, through its NADPH-mediated activation in hypoxia, as the main ubiquitin ligase controlling SREBP2 stability. Hypoxia-mediated degradation of SREBP2 protects cells from statin-induced cell death by forcing cells to rely on exogenous cholesterol uptake, explaining why many solid organ tumours become auxotrophic for cholesterol. Our findings therefore uncover an oxygen-sensitive pathway for governing cholesterol synthesis through regulated SREBP2-dependent protein degradation.


Assuntos
Oxigênio , Fatores de Transcrição , Animais , Humanos , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Hipóxia , Colesterol/metabolismo , Esteróis , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mamíferos/metabolismo
6.
EMBO J ; 41(19): e110777, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35993436

RESUMO

The regulation of membrane lipid composition is critical for cellular homeostasis. Cells are particularly sensitive to phospholipid saturation, with increased saturation causing membrane rigidification and lipotoxicity. How mammalian cells sense membrane lipid composition and reverse fatty acid (FA)-induced membrane rigidification is poorly understood. Here we systematically identify proteins that differ between mammalian cells fed saturated versus unsaturated FAs. The most differentially expressed proteins were two ER-resident polytopic membrane proteins: the E3 ubiquitin ligase RNF145 and the lipid hydrolase ADIPOR2. In unsaturated lipid membranes, RNF145 is stable, promoting its lipid-sensitive interaction, ubiquitination and degradation of ADIPOR2. When membranes become enriched in saturated FAs, RNF145 is rapidly auto-ubiquitinated and degraded, stabilising ADIPOR2, whose hydrolase activity restores lipid homeostasis and prevents lipotoxicity. We therefore identify RNF145 as a FA-responsive ubiquitin ligase which, together with ADIPOR2, defines an autoregulatory pathway that controls cellular membrane lipid homeostasis and prevents acute lipotoxic stress.


Assuntos
Hidrolases , Fluidez de Membrana , Animais , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Mamíferos , Proteínas de Membrana/metabolismo , Fosfolipídeos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Curr Opin Cell Biol ; 65: 103-111, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580085

RESUMO

Cholesterol is an essential component of mammalian membranes, and its homeostasis is strictly regulated, with imbalances causing atherosclerosis, Niemann Pick disease, and familial hypercholesterolemia. Cellular cholesterol supply is mediated by LDL-cholesterol import and de novo cholesterol biosynthesis, and both pathways are adjusted to cellular demand by the cholesterol-sensitive SREBP2 transcription factor. Cholesterol homeostasis is modulated by a wide variety of metabolic pathways and the ubiquitination machinery, in particular E3 ubiquitin ligases. In this article, we review recent progress in understanding the role of E3 ubiquitin ligases in the metabolic control of cellular sterol homeostasis.


Assuntos
Homeostase , Esteróis/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
8.
J Cell Sci ; 133(8)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332093

RESUMO

Integral membrane proteins play key functional roles at organelles and the plasma membrane, necessitating their efficient and accurate biogenesis to ensure appropriate targeting and activity. The endoplasmic reticulum membrane protein complex (EMC) has recently emerged as an important eukaryotic complex for biogenesis of integral membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a bona fide complex almost a decade ago, light is just now being shed on the mechanism and selectivity underlying the cellular responsibilities of the EMC. In this Review, we revisit the myriad of functions attributed the EMC through the lens of these new mechanistic insights, to address questions of the cellular and organismal roles the EMC has evolved to undertake.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Homeostase , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas
9.
J Cell Sci ; 132(2)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30578317

RESUMO

The eukaryotic endoplasmic reticulum (ER) membrane contains essential complexes that oversee protein biogenesis and lipid metabolism, impacting nearly all aspects of cell physiology. The ER membrane protein complex (EMC) is a newly described transmembrane domain (TMD) insertase linked with various phenotypes, but whose clients and cellular responsibilities remain incompletely understood. We report that EMC deficiency limits the cellular boundaries defining cholesterol tolerance, reflected by diminished viability with limiting or excessive extracellular cholesterol. Lipidomic and proteomic analyses revealed defective biogenesis and concomitant loss of the TMD-containing ER-resident enzymes sterol-O-acyltransferase 1 (SOAT1) and squalene synthase (SQS, also known as FDFT1), which serve strategic roles in the adaptation of cells to changes in cholesterol availability. Insertion of the weakly hydrophobic tail-anchor (TA) of SQS into the ER membrane by the EMC ensures sufficient flux through the sterol biosynthetic pathway while biogenesis of polytopic SOAT1 promoted by the EMC provides cells with the ability to store free cholesterol as inert cholesteryl esters. By facilitating insertion of TMDs that permit essential mammalian sterol-regulating enzymes to mature accurately, the EMC is an important biogenic determinant of cellular robustness to fluctuations in cholesterol availability.This article has an associated First Person interview with the first author of the paper.


Assuntos
Colesterol/biossíntese , Retículo Endoplasmático/enzimologia , Farnesil-Difosfato Farnesiltransferase/metabolismo , Membranas Intracelulares/enzimologia , Complexos Multienzimáticos/metabolismo , Esterol O-Aciltransferase/metabolismo , Linhagem Celular Tumoral , Colesterol/genética , Retículo Endoplasmático/genética , Farnesil-Difosfato Farnesiltransferase/genética , Humanos , Complexos Multienzimáticos/genética , Esterol O-Aciltransferase/genética
10.
Elife ; 72018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30543180

RESUMO

Mammalian HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the cholesterol biosynthetic pathway and the therapeutic target of statins, is post-transcriptionally regulated by sterol-accelerated degradation. Under cholesterol-replete conditions, HMGCR is ubiquitinated and degraded, but the identity of the E3 ubiquitin ligase(s) responsible for mammalian HMGCR turnover remains controversial. Using systematic, unbiased CRISPR/Cas9 genome-wide screens with a sterol-sensitive endogenous HMGCR reporter, we comprehensively map the E3 ligase landscape required for sterol-accelerated HMGCR degradation. We find that RNF145 and gp78 independently co-ordinate HMGCR ubiquitination and degradation. RNF145, a sterol-responsive ER-resident E3 ligase, is unstable but accumulates following sterol depletion. Sterol addition triggers RNF145 recruitment to HMGCR via Insigs, promoting HMGCR ubiquitination and proteasome-mediated degradation. In the absence of both RNF145 and gp78, Hrd1, a third UBE2G2-dependent E3 ligase, partially regulates HMGCR activity. Our findings reveal a critical role for the sterol-responsive RNF145 in HMGCR regulation and elucidate the complexity of sterol-accelerated HMGCR degradation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Hidroximetilglutaril-CoA Redutases/genética , Proteínas de Membrana/genética , Receptores do Fator Autócrino de Motilidade/genética , Ubiquitina-Proteína Ligases/genética , Animais , Sistemas CRISPR-Cas , Colesterol/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteólise , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
11.
Science ; 359(6374): 470-473, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29242231

RESUMO

Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed the insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/química , Células HEK293 , Humanos , Membranas Intracelulares/química , Proteínas de Membrana/química , Domínios Proteicos , Transporte Proteico
12.
J Cell Sci ; 130(19): 3322-3335, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827405

RESUMO

The mammalian ubiquitin ligase Hrd1 is the central component of a complex facilitating degradation of misfolded proteins during the ubiquitin-proteasome-dependent process of ER-associated degradation (ERAD). Hrd1 associates with cofactors to execute ERAD, but their roles and how they assemble with Hrd1 are not well understood. Here, we identify crucial cofactor interaction domains within Hrd1 and report a previously unrecognised evolutionarily conserved segment within the intrinsically disordered cytoplasmic domain of Hrd1 (termed the HAF-H domain), which engages complementary segments in the cofactors FAM8A1 and Herp (also known as HERPUD1). This domain is required by Hrd1 to interact with both FAM8A1 and Herp, as well as to assemble higher-order Hrd1 complexes. FAM8A1 enhances binding of Herp to Hrd1, an interaction that is required for ERAD. Our findings support a model of Hrd1 complex formation, where the Hrd1 cytoplasmic domain and FAM8A1 have a central role in the assembly and activity of this ERAD machinery.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ubiquitina-Proteína Ligases/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases/genética
13.
Mol Cell ; 63(6): 990-1005, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591049

RESUMO

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.


Assuntos
NF-kappa B/química , Proteínas/química , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Enzima Desubiquitinante CYLD , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Cinética , Simulação de Acoplamento Molecular , NF-kappa B/genética , NF-kappa B/imunologia , Proteína Adaptadora de Sinalização NOD2/química , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas/genética , Proteínas/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade por Substrato , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
14.
Nat Cell Biol ; 18(7): 724-6, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350445

RESUMO

Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission.


Assuntos
Citoplasma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Ubiquitina-Proteína Ligases/metabolismo , Animais , Homeostase/fisiologia , Humanos , Transporte Proteico
15.
PLoS One ; 8(12): e83212, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340093

RESUMO

The Cancer/Testis (CT) antigen family of genes are transcriptionally repressed in most human tissues but are atypically re-expressed in many malignant tumour types. Their restricted expression profile makes CT antigens ideal targets for cancer immunotherapy. As little is known about whether CT antigens may be regulated by post-translational processing, we investigated the mechanisms governing degradation of NY-ESO-1 and MAGE-C1 in selected cancer cell lines. Inhibitors of proteasome-mediated degradation induced the partitioning of NY-ESO-1 and MAGE-C1 into a detergent insoluble fraction. Moreover, this treatment also resulted in increased localisation of NY-ESO-1 and MAGE-C1 at the centrosome. Despite their interaction, relocation of either NY-ESO-1 or MAGE-C1 to the centrosome could occur independently of each other. Using a series of truncated fragments, the regions corresponding to NY-ESO-1(91-150) and MAGE-C1(900-1116) were established as important for controlling both stability and localisation of these CT antigens. Our findings demonstrate that the steady state levels of NY-ESO-1 and MAGE-C1 are regulated by proteasomal degradation and that both behave as aggregation-prone proteins upon accumulation. With proteasome inhibitors being increasingly used as front-line treatment in cancer, these data raise issues about CT antigen processing for antigenic presentation and therefore immunogenicity in cancer patients.


Assuntos
Antígenos de Neoplasias/metabolismo , Centrossomo/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Apresentação de Antígeno , Linhagem Celular Tumoral , Centrossomo/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Camundongos , Células NIH 3T3 , Inibidores de Proteassoma/química , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...