Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 12(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35743680

RESUMO

Immune evasion of SARS-CoV-2 undermines current strategies tocounteract the pandemic, with the efficacy of therapeutic virus-neutralizing monoclonal antibodies (nAbs) being affected the most. In this work, we asked whether two previously identified human cross-neutralizing nAbs, iB14 (class VH1-58) and iB20 (class VH3-53/66), are capable of neutralizing the recently emerged Omicron (BA.1) variant. Both nAbs were found to bind the Omicron RBD with a nanomolar affinity, yet they displayed contrasting functional features. When tested against Omicron, the neutralizing activity of iB14 was reduced 50-fold, whereas iB20 displayed a surprising increase in activity. Thus, iB20 is a unique representative of the VH3-53/66-class of nAbs in terms of breadth of neutralization, which establishes it as a candidate for COVID-19 therapy and prophylactics.

2.
J Biomol Struct Dyn ; 40(7): 3196-3212, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33222632

RESUMO

The polyepitope strategy is promising approach for successfully creating a broadly protective flu vaccine, which targets T-lymphocytes (both CD4+ and CD8+) to recognise the most conserved epitopes of viral proteins. In this study, we employed a computer-aided approach to develop several artificial antigens potentially capable of evoking immune responses to different virus subtypes. These antigens included conservative T-cell epitopes of different influenza A virus proteins. To design epitope-based antigens we used experimentally verified information regarding influenza virus T-cell epitopes from the Immune Epitope Database (IEDB) (http://www.iedb.org). We constructed two "human" and two "murine" variants of polyepitope antigens. Amino acid sequences of target polyepitope antigens were designed using our original TEpredict/PolyCTLDesigner software. Immunogenic and protective features of DNA constructs encoding "murine" target T-cell immunogens were studied in BALB/c mice. We showed that mice groups immunised with a combination of computer-generated "murine" DNA immunogens had a 37.5% survival rate after receiving a lethal dose of either A/California/4/2009 (H1N1) virus or A/Aichi/2/68 (H3N2) virus, while immunisation with live flu H1N1 and H3N2 vaccine strains provided protection against homologous viruses and failed to protect against heterologous viruses. These results demonstrate that mechanisms of cross-protective immunity may be associated with the stimulation of specific T-cell responses. This study demonstrates that our computer-aided approach may be successfully used for rational designing artificial polyepitope antigens capable of inducing virus-specific T-lymphocyte responses and providing partial protection against two different influenza virus subtypes.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Antígenos Virais/genética , Epitopos de Linfócito T , Humanos , Vírus da Influenza A Subtipo H3N2 , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T
3.
Cell Discov ; 7(1): 96, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667147

RESUMO

In the absence of virus-targeting small-molecule drugs approved for the treatment and prevention of COVID-19, broadening the repertoire of potent SARS-CoV-2-neutralizing antibodies represents an important area of research in response to the ongoing pandemic. Systematic analysis of such antibodies and their combinations can be particularly instrumental for identification of candidates that may prove resistant to the emerging viral escape variants. Here, we isolated a panel of 23 RBD-specific human monoclonal antibodies from the B cells of convalescent patients. A surprisingly large proportion of such antibodies displayed potent virus-neutralizing activity both in vitro and in vivo. Four of the isolated nAbs can be categorized as ultrapotent with an apparent IC100 below 16 ng/mL. We show that individual nAbs as well as dual combinations thereof retain activity against currently circulating SARS-CoV-2 variants of concern (such as B.1.1.7, B.1.351, B.1.617, and C.37), as well as against other viral variants. When used as a prophylactics or therapeutics, these nAbs could potently suppress viral replication and prevent lung pathology in SARS-CoV-2-infected hamsters. Our data contribute to the rational development of oligoclonal therapeutic nAb cocktails mitigating the risk of SARS-CoV-2 escape.

4.
Nanomaterials (Basel) ; 9(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091697

RESUMO

Porous films of anodic aluminum oxide are widely used as templates for the electrochemical preparation of functional nanocomposites containing ordered arrays of anisotropic nanostructures. In these structures, the volume fraction of the inclusion phase, which strongly determines the functional properties of the nanocomposite, is equal to the porosity of the initial template. For the range of systems, the most pronounced effects and the best functional properties are expected when the volume fraction of metal is less than 10%, whereas the porosity of anodic aluminum oxide typically exceeds this value. In the present work, the possibility of the application of anodic aluminum oxide for obtaining hyperbolic metamaterials in the form of nanocomposites with the metal volume fraction smaller than the template porosity is demonstrated for the first time. A decrease in the fraction of the pores accessible for electrodeposition is achieved by controlled blocking of the portion of pores during anodization when the template is formed. The effectiveness of the proposed approach has been shown in the example of obtaining nanocomposites containing Au nanorods arrays. The possibility for the control over the position of the resonance absorption band corresponding to the excitation of collective longitudinal oscillations of the electron gas in the nanorods in a wide range of wavelengths by controlled decreasing of the metal volume fraction, is shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...