Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675501

RESUMO

A unitary model of drug release dynamics is proposed, assuming that the polymer-drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be "mimicked" (via period doubling, damped oscillations, modulated and "chaotic" regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions). In conclusion, we propose a unitary model for describing release dynamics in polymer-drug systems. In the model proposed, the polymer-drug dynamics can be described by employing the Scale Relativity Theory in the monofractal case or also in the multifractal one.

2.
Diagnostics (Basel) ; 14(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535046

RESUMO

(1) Background: Numerous variables could influence the risk of rectal cancer recurrence or metastasis, and machine learning (ML)-based algorithms can help us refine the risk stratification process of these patients and choose the best therapeutic approach. The aim of this study was to assess the predictive performance of 4 ML-based models for the prediction of local recurrence or distant metastasis in patients with locally advanced low rectal adenocarcinomas who underwent neoadjuvant chemoradiotherapy and surgical treatment; (2) Methods: Patients who were admitted at the first Oncologic Surgical Clinic from the Regional Institute of Oncology, Iasi, Romania were retrospectively included in this study between November 2019 and July 2023. Decision tree (DT), naïve Bayes (NB), support vector machine (SVM), and random forest (RF) were used to analyze imagistic, surgical, and pathological data retrieved from the medical files, and their predictive performance was assessed; (3) Results: The best predictive performance was achieved by RF when used to predict disease recurrence (accuracy: 90.85%) or distant metastasis (accuracy: 89.63%). RF was closely followed by SVM (accuracy for recurrence 87.8%; accuracy for metastasis: 87.2%) in terms of predictive performance. NB and DT achieved moderate predictive power for the evaluated outcomes; (4) Conclusions: Complex algorithms such as RF and SVM could be useful for improving the prediction of adverse oncological outcomes in patients with low rectal adenocarcinoma.

3.
Medicina (Kaunas) ; 60(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399617

RESUMO

Background and Objectives: A positive pathological circumferential resection margin is a key prognostic factor in rectal cancer surgery. The point of this prospective study was to see how well different MRI parameters could predict a positive pathological circumferential resection margin (pCRM) in people who had been diagnosed with rectal adenocarcinoma, either on their own or when used together. Materials and Methods: Between November 2019 and February 2023, a total of 112 patients were enrolled in this prospective study and followed up for a 36-month period. MRI predictors such as circumferential resection margin (mCRM), presence of extramural venous invasion (mrEMVI), tumor location, and the distance between the tumor and anal verge, taken individually or combined, were evaluated with univariate and sensitivity analyses. Survival estimates in relation to a pCRM status were also determined using Kaplan-Meier analysis. Results: When individually evaluated, the best MRI predictor for the detection of a pCRM in the postsurgical histopathological examination is mrEMVI, which achieved a sensitivity (Se) of 77.78%, a specificity (Sp) of 87.38%, a negative predictive value (NPV) of 97.83%, and an accuracy of 86.61%. Also, the best predictive performance was achieved by a model that comprised all MRI predictors (mCRM+ mrEMVI+ anterior location+ < 4 cm from the anal verge), with an Se of 66.67%, an Sp of 88.46%, an NPV of 96.84%, and an accuracy of 86.73%. The survival rates were significantly higher in the pCRM-negative group (p < 0.001). Conclusions: The use of selective individual imaging predictors or combined models could be useful for the prediction of positive pCRM and risk stratification for local recurrence or distant metastasis.


Assuntos
Margens de Excisão , Neoplasias Retais , Humanos , Estudos Prospectivos , Estudos de Viabilidade , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia , Imageamento por Ressonância Magnética/métodos , Estadiamento de Neoplasias , Estudos Retrospectivos
4.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256250

RESUMO

Oncolytic viruses (OVs) are emerging as potential treatment options for cancer. Natural and genetically engineered viruses exhibit various antitumor mechanisms. OVs act by direct cytolysis, the potentiation of the immune system through antigen release, and the activation of inflammatory responses or indirectly by interference with different types of elements in the tumor microenvironment, modification of energy metabolism in tumor cells, and antiangiogenic action. The action of OVs is pleiotropic, and they show varied interactions with the host and tumor cells. An important impediment in oncolytic virotherapy is the journey of the virus into the tumor cells and the possibility of its binding to different biological and nonbiological vectors. OVs have been demonstrated to eliminate cancer cells that are resistant to standard treatments in many clinical trials for various cancers (melanoma, lung, and hepatic); however, there are several elements of resistance to the action of viruses per se. Therefore, it is necessary to evaluate the combination of OVs with other standard treatment modalities, such as chemotherapy, immunotherapy, targeted therapies, and cellular therapies, to increase the response rate. This review provides a comprehensive update on OVs, their use in oncolytic virotherapy, and the future prospects of this therapy alongside the standard therapies currently used in cancer treatment.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Imunoterapia , Vírus Oncolíticos/genética , Morte Celular , Terapia Baseada em Transplante de Células e Tecidos , Neoplasias/terapia
5.
Pharmaceutics ; 14(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214129

RESUMO

Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.

6.
Exp Ther Med ; 21(5): 535, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33815608

RESUMO

Cancer immunotherapy has shifted the paradigm in cancer treatment in recent years. Immune checkpoint blockage (ICB), the active cancer vaccination and chimeric antigen receptor (CAR) for T-cell-based adoptive cell transfer represent the main developments, achieving a surprising increased survival in patients included in clinical trials. In spite of these results, the current state-of-the-art immunotherapy has its limitations in efficacy. The existence of an interdisciplinary interface involving current knowledge in biology, immunology, bioengineering and materials science represents important progress in increasing the effectiveness of immunotherapy in cancer. Cutaneous melanoma remains a difficult cancer to treat, in which immunotherapy is a major therapeutic option. In fact, enhancing immunotherapy is possible using sophisticated biomedical nanotechnology platforms of organic or inorganic materials or engineering various immune cells to enhance the immune system. In addition, biological devices have developed, changing the approach to and treatment results in melanoma. In this review, we present different modalities to modulate the immune system, as well as opportunities and challenges in melanoma treatment.

7.
Front Oncol ; 10: 526850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330019

RESUMO

Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...