Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32401198

RESUMO

Copy number alterations (CNAs) play an important role in molding the genomes of breast cancers and have been shown to be clinically useful for prognostic and therapeutic purposes. However, our knowledge of intra-tumoral genetic heterogeneity of this important class of somatic alterations is limited. Here, using single-cell sequencing, we comprehensively map out the facets of copy number alteration heterogeneity in a cohort of breast cancer tumors. Ou/var/www/html/elife/12-05-2020/backup/r analyses reveal: genetic heterogeneity of non-tumor cells (i.e. stroma) within the tumor mass; the extent to which copy number heterogeneity impacts breast cancer genomes and the importance of both the genomic location and dosage of sub-clonal events; the pervasive nature of genetic heterogeneity of chromosomal amplifications; and the association of copy number heterogeneity with clinical and biological parameters such as polyploidy and estrogen receptor negative status. Our data highlight the power of single-cell genomics in dissecting, in its many forms, intra-tumoral genetic heterogeneity of CNAs, the magnitude with which CNA heterogeneity affects the genomes of breast cancers, and the potential importance of CNA heterogeneity in phenomena such as therapeutic resistance and disease relapse.


Cells in the body remain healthy by tightly preventing and repairing random changes, or mutations, in their genetic material. In cancer cells, however, these mechanisms can break down. When these cells grow and multiply, they can then go on to accumulate many mutations. As a result, cancer cells in the same tumor can each contain a unique combination of genetic changes. This genetic heterogeneity has the potential to affect how cancer responds to treatment, and is increasingly becoming appreciated clinically. For example, if a drug only works against cancer cells carrying a specific mutation, any cells lacking this genetic change will keep growing and cause a relapse. However, it is still difficult to quantify and understand genetic heterogeneity in cancer. Copy number alterations (or CNAs) are a class of mutation where large and small sections of genetic material are gained or lost. This can result in cells that have an abnormal number of copies of the genes in these sections. Here, Baslan et al. set out to explore how CNAs might vary between individual cancer cells within the same tumor. To do so, thousands of individual cancer cells were isolated from human breast tumors, and a technique called single-cell genome sequencing used to screen the genetic information of each of them. These experiments confirmed that CNAs did differ ­ sometimes dramatically ­ between patients and among cells taken from the same tumor. For example, many of the cells carried extra copies of well-known cancer genes important for treatment, but the exact number of copies varied between cells. This heterogeneity existed for individual genes as well as larger stretches of DNA: this was the case, for instance, for an entire section of chromosome 8, a region often affected in breast and other tumors. The work by Baslan et al. captures the sheer extent of genetic heterogeneity in cancer and in doing so, highlights the power of single-cell genome sequencing. In the future, a finer understanding of the genetic changes present at the level of an individual cancer cell may help clinicians to manage the disease more effectively.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Dosagem de Genes , Heterogeneidade Genética , Genômica , Análise de Célula Única , Sequenciamento Completo do Genoma , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Ensaios Clínicos Fase II como Assunto , Feminino , Predisposição Genética para Doença , Humanos , Fenótipo , Prognóstico , RNA-Seq
2.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184234

RESUMO

A bioinformatics approach was employed to identify transcriptome alterations in the peripheral blood mononuclear cells of well-characterized human subjects who were diagnosed with early disseminated Lyme disease (LD) based on stringent microbiological and clinical criteria. Transcriptomes were assessed at the time of presentation and also at approximately 1 month (early convalescence) and 6 months (late convalescence) after initiation of an appropriate antibiotic regimen. Comparative transcriptomics identified 335 transcripts, representing 233 unique genes, with significant alterations of at least 2-fold expression in acute- or convalescent-phase blood samples from LD subjects relative to healthy donors. Acute-phase blood samples from LD subjects had the largest number of differentially expressed transcripts (187 induced, 54 repressed). This transcriptional profile, which was dominated by interferon-regulated genes, was sustained during early convalescence. 6 months after antibiotic treatment the transcriptome of LD subjects was indistinguishable from that of healthy controls based on two separate methods of analysis. Return of the LD expression profile to levels found in control subjects was concordant with disease outcome; 82% of subjects with LD experienced at least one symptom at the baseline visit compared to 43% at the early convalescence time point and only a single patient (9%) at the 6-month convalescence time point. Using the random forest machine learning algorithm, we developed an efficient computational framework to identify sets of 20 classifier genes that discriminated LD from other bacterial and viral infections. These novel LD biomarkers not only differentiated subjects with acute disseminated LD from healthy controls with 96% accuracy but also distinguished between subjects with acute and resolved (late convalescent) disease with 97% accuracy.IMPORTANCE Lyme disease (LD), caused by Borrelia burgdorferi, is the most common tick-borne infectious disease in the United States. We examined gene expression patterns in the blood of individuals with early disseminated LD at the time of diagnosis (acute) and also at approximately 1 month and 6 months following antibiotic treatment. A distinct acute LD profile was observed that was sustained during early convalescence (1 month) but returned to control levels 6 months after treatment. Using a computer learning algorithm, we identified sets of 20 classifier genes that discriminate LD from other bacterial and viral infections. In addition, these novel LD biomarkers are highly accurate in distinguishing patients with acute LD from healthy subjects and in discriminating between individuals with active and resolved infection. This computational approach offers the potential for more accurate diagnosis of early disseminated Lyme disease. It may also allow improved monitoring of treatment efficacy and disease resolution.


Assuntos
Interações Hospedeiro-Patógeno , Doença de Lyme/diagnóstico , Doença de Lyme/imunologia , Transcriptoma , Proteínas de Fase Aguda/genética , Algoritmos , Biomarcadores/sangue , Borrelia burgdorferi/imunologia , Biologia Computacional , Convalescença , Feminino , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Doença de Lyme/sangue , Aprendizado de Máquina , Masculino
3.
Genes Chromosomes Cancer ; 54(8): 500-505, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26032162

RESUMO

Xp11 (TFE3) translocation renal cell carcinoma (RCC) is officially recognized as a distinct subtype of RCC in the 2004 WHO classification. This neoplasm is characterized by several chromosomal translocations between the TFE3-involving Xp11.2 breakpoint and various fusion partners. To date, five partner genes have been identified, that is, PRCC in 1q21, PSF in 1q34, ASPL in 17q25, CLTC in 17q23, and NONO in Xq12; and three additional translocations have been reported with no partner gene being defined: t(X;3)(p11;q23), t(X;10)(p11;q23), and t(X;19)(p11;q13). Here, we report the identification of a novel TFE3 fusion partner, PARP14 in chromosome band3q21. We used RNA-seq on a 10-year-old FFPE (formalin-fixed, paraffin-embedded) tissue sample, which carried t(X;3)(p11;q23) as detected in the original cytogenetic study. The fusion transcript connected the 5'-end of the first two exons of PARP14 to the 3'-end of five exons of TFE3, which was verified by reverse transcription PCR (RT-PCR) and Sanger sequencing. Similar to other TFE3 fusions previously reported, the predicted PARP14-TFE3 product retains the nuclear localization and DNA-binding domains of TFE3. This finding expands the list of TFE3 translocation partner genes and re-emphasizes the essential oncogenic role of TFE3 fusion proteins in this tumor. Our result also clearly demonstrated the feasibility of identifying chromosomal translocation by RNA-seq in clinical FFPE, which are easily accessible and associated with valuable clinical information. © 2015 Wiley Periodicals, Inc.

4.
IEEE Trans Neural Netw ; 22(4): 614-26, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21411402

RESUMO

In this paper, we develop a neuroadaptive control architecture to control lung volume and minute ventilation with input pressure constraints that also accounts for spontaneous breathing by the patient. Specifically, we develop a pressure - and work-limited neuroadaptive controller for mechanical ventilation based on a nonlinear multicompartmental lung model. The control framework does not rely on any averaged data and is designed to automatically adjust the input pressure to the patient's physiological characteristics capturing lung resistance and compliance modeling uncertainty. Moreover, the controller accounts for input pressure constraints as well as work of breathing constraints. Finally, the effect of spontaneous breathing is incorporated within the lung model and the control framework.


Assuntos
Adaptação Fisiológica/fisiologia , Cuidados Críticos , Pulmão/fisiologia , Pressão , Respiração Artificial/instrumentação , Retroalimentação Fisiológica , Humanos , Matemática , Modelos Biológicos , Respiração com Pressão Positiva , Respiração Artificial/métodos , Volume de Ventilação Pulmonar/fisiologia , Trabalho Respiratório
5.
IEEE Trans Neural Netw ; 21(9): 1507-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20709642

RESUMO

This brief extends the new neuroadaptive control framework for continuous-time nonlinear uncertain dynamical systems based on a Q -modification architecture to discrete-time systems. As in the continuous-time case, the discrete-time update laws involve auxiliary terms, or Q-modification terms, predicated on an estimate of the unknown neural network weights which in turn involve a set of auxiliary equations characterizing a set of affine hyperplanes. In addition, we show that the Q -modification terms in the discrete-time update law are designed to minimize an error criterion involving a sum of squares of the distances between the update weights and the family of affine hyperplanes.


Assuntos
Algoritmos , Inteligência Artificial , Automação/métodos , Simulação por Computador/normas , Redes Neurais de Computação , Adaptação Fisiológica/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...