Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 4(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28612046

RESUMO

Photoreceptor ribbon synapses tonically release glutamate. To ensure efficient signal transmission and prevent glutamate toxicity, a highly efficient glutamate removal system provided by members of the SLC1 gene family is required. By using a combination of biophysical and in vivo studies, we elucidate the role of excitatory amino acid transporter 2 (EAAT2) proteins in synaptic glutamate homeostasis at the zebrafish photoreceptor synapse. The main glutamate sink is provided by the glial EAAT2a, reflected by reduced electroretinographic responses in EAAT2a-depleted larvae. EAAT2b is located on the tips of cone pedicles and contributes little to glutamate reuptake. However, this transporter displays both a large chloride conductance and leak current, being important in stabilizing the cone resting potential. This work demonstrates not only how proteins originating from the same gene family can complement each other's expression profiles and biophysical properties, but also how presynaptic and glial transporters are coordinated to ensure efficient synaptic transmission at glutamatergic synapses of the central nervous system.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Células Fotorreceptoras/classificação , Células Fotorreceptoras/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Animais Geneticamente Modificados , Transportador 2 de Aminoácido Excitatório/genética , Olho/citologia , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Larva , Morfolinos/genética , Morfolinos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Retina/anatomia & histologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinapses , Transmissão Sináptica/fisiologia , Vias Visuais/fisiologia , Xenopus , Peixe-Zebra
2.
J Neurosci ; 36(11): 3350-62, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26985042

RESUMO

The hypothalamo-pituitary-adrenocortical (HPA) axis regulates stress physiology and behavior. To achieve an optimally tuned adaptive response, it is critical that the magnitude of the stress response matches the severity of the threat. Corticotropin-releasing hormone (CRH) released from the paraventricular nucleus of the hypothalamus is a major regulator of the HPA axis. However, how CRH-producing neurons in an intact animal respond to different stressor intensities is currently not known. Using two-photon calcium imaging on intact larval zebrafish, we recorded the activity of CRH cells, while the larvae were exposed to stressors of varying intensity. By combining behavioral and physiological measures, we first determined how sudden alterations in environmental conditions lead to different levels of stress axis activation. Then, we measured changes in the frequency and amplitude of Ca(2+) transients in individual CRH neurons in response to such stressors. The response magnitude of individual CRH cells covaried with stressor intensity. Furthermore, stressors caused the recruitment of previously inactive CRH neurons in an intensity-dependent manner, thus increasing the pool of responsive CRH cells. Strikingly, stressor-induced activity appeared highly synchronized among CRH neurons, and also across hemispheres. Thus, the stressor strength-dependent output of CRH neurons emerges by a dual mechanism that involves both the increased activity of individual cells and the recruitment of a larger pool of responsive cells. The synchronicity of CRH neurons within and across hemispheres ensures that the overall output of the HPA axis matches the severity of the threat. SIGNIFICANCE STATEMENT: Stressors trigger adaptive responses in the body that are essential for survival. How the brain responds to acute stressors of varying intensity in an intact animal, however, is not well understood. We address this question using two-photon Ca(2+) imaging in larval zebrafish with transgenically labeled corticotropin-releasing hormone (CRH) cells, which represent a major regulator of the stress axis. We show that stressor strength-dependent responses of CRH neurons emerge via an intensity-dependent increase in the activity of individual CRH cells, and by an increase in the pool of responsive CRH cells at the population level. Furthermore, we report striking synchronicity among CRH neurons even across hemispheres, which suggests tight intrahypothalamic and interhypothalamic coordination. Thus, our work reveals how CRH neurons respond to different levels of acute stress in vivo.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipotálamo/patologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Estresse Fisiológico/fisiologia , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/fisiologia , Cálcio/metabolismo , Hormônio Liberador da Corticotropina/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hidrocortisona/metabolismo , Larva , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Potenciais da Membrana/genética , Atividade Motora/genética , Peixe-Zebra
3.
Biol Open ; 4(2): 146-54, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25572423

RESUMO

The formation of functional neuronal circuits relies on accurate migration and proper axonal outgrowth of neuronal precursors. On the route to their targets migrating cells and growing axons depend on both, directional information from neurotropic cues and adhesive interactions mediated via extracellular matrix molecules or neighbouring cells. The inactivation of guidance cues or the interference with cell adhesion can cause severe defects in neuronal migration and axon guidance. In this study we have analyzed the function of the MAM domain containing glycosylphosphatidylinositol anchor 2A (MDGA2A) protein in zebrafish cranial motoneuron development. MDGA2A is prominently expressed in distinct clusters of cranial motoneurons, especially in the ones of the trigeminal and facial nerves. Analyses of MDGA2A knockdown embryos by light sheet and confocal microscopy revealed impaired migration and aberrant axonal outgrowth of these neurons; suggesting that adhesive interactions mediated by MDGA2A are required for the proper arrangement and outgrowth of cranial motoneuron subtypes.

4.
Curr Biol ; 24(20): 2376-85, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25242030

RESUMO

BACKGROUND: A principal task of the visual system is to detect and classify moving objects in the visual environment. Information about the size of an object is critical for selecting appropriate behavioral responses. Object size is encoded in retinal ganglion cell (RGC) activity. Little is known, however, about how inputs from the multitude of RGC subtypes are distributed to higher visual centers and how information is combined from these feature-selective inputs. RESULTS: Here we show that in the zebrafish optic tectum, prey- or predator-like moving targets evoke activity in distinct groups of RGC fibers dependent on target size, demonstrating a retinal origin of tectal size classification. Small-size-selective retinal inputs are relatively more frequent in the most superficial layer of the tectal neuropil, whereas large-size-selective inputs predominate in deeper layers. Monostratified superficial interneurons (SINs) process large-size- and small-size-selective signals dependent on their dendritic target layer, consistent with the retinal input organization. Further downstream, small- and large-sized objects are encoded in population activity of separate sets of tectal neurons. CONCLUSIONS: Ethologically relevant size classes are preferentially processed in different layers of the tectal neuropil. The tectum categorizes visual targets on the basis of retinally computed size information, suggesting a critical role in visually guided response selection.


Assuntos
Percepção de Tamanho/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais , Axônios/fisiologia , Fenômenos Eletrofisiológicos , Larva/fisiologia , Retina/fisiologia , Neurônios Retinianos/fisiologia , Vias Visuais/fisiologia , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...