Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 12(6): e055082, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760534

RESUMO

OBJECTIVES: Self-Examination Low-Cost Full-Field Optical Coherence Tomography (SELFF-OCT) is a novel OCT technology that was specifically designed for home monitoring of neovascular age-related macular degeneration (AMD). First clinical findings have been reported before. This trial investigates an improved prototype for patients with AMD and focusses on device operability and diagnostic accuracy compared with established spectral-domain OCT (SD-OCT). DESIGN: Prospective single-arm diagnostic accuracy study. SETTING: Tertiary care centre (University Eye Clinic). PARTICIPANTS: 46 patients with age-related macular degeneration. INTERVENTIONS: Patients received short training in device handling and then performed multiple self-scans with the SELFF-OCT according to a predefined protocol. Additionally, all eyes were examined with standard SD-OCT, performed by medical personnel. All images were graded by at least 2 masked investigators in a reading centre. PRIMARY OUTCOME MEASURE: Rate of successful self-measurements. SECONDARY OUTCOME MEASURES: Sensitivity and specificity of SELFF-OCT versus SD-OCT for different biomarkers and necessity for antivascular endothelial growth factor (anti-VEGF) treatment. RESULTS: In 86% of all examined eyes, OCT self-acquisition resulted in interpretable retinal OCT volume scans. In these patients, the sensitivity for detection of anti-VEGF treatment necessity was 0.94 (95% CI 0.79 to 0.99) and specificity 0.95 (95% CI 0.82 to 0.99). CONCLUSIONS: SELFF-OCT was used successfully for retinal self-examination in most patients, and it could become a valuable tool for retinal home monitoring in the future. Improvements are in progress to reduce device size and to improve handling, image quality and success rates. TRIAL REGISTRATION NUMBER: DRKS00013755, CIV-17-12-022384.


Assuntos
Degeneração Macular , Tomografia de Coerência Óptica , Estudos Transversais , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/tratamento farmacológico , Estudos Prospectivos , Autoexame , Tomografia de Coerência Óptica/métodos
2.
Opt Lett ; 45(17): 4766-4769, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870852

RESUMO

While optical coherence tomography (OCT) provides a resolution down to 1 µm, it has difficulties in visualizing cellular structures due to a lack of scattering contrast. By evaluating signal fluctuations, a significant contrast enhancement was demonstrated using time-domain full-field OCT (FF-OCT), which makes cellular and subcellular structures visible. The putative cause of the dynamic OCT signal is the site-dependent active motion of cellular structures in a sub-micrometer range, which provides histology-like contrast. Here we demonstrate dynamic contrast with a scanning frequency-domain OCT (FD-OCT), which we believe has crucial advantages. Given the inherent sectional imaging geometry, scanning FD-OCT provides depth-resolved images across tissue layers, a perspective known from histopathology, much faster and more efficiently than FF-OCT. Both shorter acquisition times and tomographic depth-sectioning reduce the sensitivity of dynamic contrast for bulk tissue motion artifacts and simplify their correction in post-processing. Dynamic contrast makes microscopic FD-OCT a promising tool for the histological analysis of unstained tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA