Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(38): 42864-42875, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103577

RESUMO

Daptomycin (DAP), a cyclic anionic lipopeptide antibiotic, is among the last resorts to treat multidrug-resistant Gram-positive bacterial infections, caused by vancomycin-resistant Enterococcus faecium or methicillin-resistant Staphylococcus aureus. DAP is administered intravenously, and via biliary excretion, ∼5-10% of the intravenous DAP dose arrives in the gastrointestinal (GI) tract where it drives resistance evolution in the off-target populations of E. faecium bacteria. Previously, we have shown in vivo that the oral administration of cholestyramine, an ion exchange biomaterial (IXB) sorbent, prevents DAP treatment from enriching DAP resistance in the populations of E. faecium shed from mice. Here, we investigate the biomaterial-DAP interfacial interactions to uncover the antibiotic removal mechanisms. The IXB-mediated DAP capture from aqueous media was measured in controlled pH/electrolyte solutions and in the simulated intestinal fluid (SIF) to uncover the molecular and colloidal mechanisms of DAP removal from the GI tract. Our findings show that the IXB electrostatically adsorbs the anionic antibiotic via a time-dependent diffusion-controlled process. Unsteady-state diffusion-adsorption mass balance describes the dynamics of adsorption well, and the maximum removal capacity is beyond the electric charge stoichiometric ratio because of DAP self-assembly. This study may open new opportunities for optimizing cholestyramine adjuvant therapy to prevent DAP resistance, as well as designing novel biomaterials to remove off-target antibiotics from the GI tract.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Materiais Biocompatíveis/farmacologia , Resina de Colestiramina , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Farmacorresistência Bacteriana , Eletrólitos , Troca Iônica , Camundongos , Testes de Sensibilidade Microbiana , Vancomicina
2.
PLoS Pathog ; 16(7): e1008506, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645119

RESUMO

Circulating androgens can modulate immune cell activity, but the impact of androgens on viral pathogenesis remains unclear. Previous data demonstrate that testosterone reduces the severity of influenza A virus (IAV) infection in male mice by mitigating pulmonary inflammation rather than by affecting viral replication. To examine the immune responses mediated by testosterone to mitigate IAV-induced inflammation, adult male mice remained gonadally intact or were gonadectomized and treated with either placebo or androgen-filled (i.e., testosterone or dihydrotestosterone) capsules prior to sublethal IAV infection. Like intact males, treatment of gonadectomized males with androgens improved the outcome of IAV infection, which was not mediated by changes in the control of virus replication or pulmonary cytokine activity. Instead, androgens accelerated pulmonary leukocyte contraction to limit inflammation. To identify which immune cells were contracting in response to androgens, the composition of pulmonary cellular infiltrates was analyzed and revealed that androgens specifically accelerated the contraction of total pulmonary inflammatory monocytes during peak disease, as well as CD8+ T cells, IAV-specific CD8+ T numbers, cytokine production and degranulation by IAV-specific CD8+ T cells, and the influx of eosinophils into the lungs following clearance of IAV. Neither depletion of eosinophils nor adoptive transfer of CD8+ T cells could reverse the ability of testosterone to protect males against IAV suggesting these were secondary immunologic effects. The effects of testosterone on the contraction of immune cell numbers and activity were blocked by co-administration of the androgen receptor antagonist flutamide and mimicked by treatment with dihydrotestosterone, which was also able to reduce the severity of IAV in female mice. These data suggest that androgen receptor signaling creates a local pulmonary environment that promotes downregulation of detrimental inflammatory immune responses to protect against prolonged influenza disease.


Assuntos
Vírus da Influenza A/imunologia , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/imunologia , Receptores Androgênicos/metabolismo , Testosterona/farmacologia , Animais , Feminino , Inflamação/imunologia , Inflamação/virologia , Pulmão/imunologia , Masculino , Camundongos Endogâmicos C57BL , Ratos , Receptores Androgênicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
3.
Cell Immunol ; 345: 103988, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31540670

RESUMO

The severity of influenza increases with age, with worse disease in aged males than females. Testosterone concentrations decline with age in males, which may impact influenza pathogenesis. Aged male mice were treated with testosterone or placebo and outcomes during influenza A virus (IAV) infection were compared with adult male mice. Aged males experienced greater morbidity and mortality than adult males, which was partially improved by testosterone treatment of aged males. Aged males cleared IAV from lungs slower than adult males, regardless of testosterone treatment. As compared with adult males, aged males experienced pulmonary, but not systemic, cytokine dysregulation, and delayed influx and contraction of IAV-specific CD8+ T cells in the lungs. Testosterone treatment in aged males partially restored pulmonary cytokine responses to levels consistent with adult males but did not alter the age-associated changes in IAV-specific CD8+ T cells. Testosterone only modestly improves outcomes of influenza in aged males.


Assuntos
Envelhecimento , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Testosterona/farmacologia , Fatores Etários , Androgênios/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citocinas/sangue , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Índice de Gravidade de Doença , Fatores Sexuais
4.
Vaccine ; 37(32): 4468-4476, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31262583

RESUMO

In both preclinical animal studies and human clinical trials, adult females tend to develop greater adaptive immune responses than males following receipt of either viral or bacterial vaccines. While there is currently no approved malaria vaccine, several anti-sporozoite vaccines, including RTS,S/AS01 and attenuated sporozoite vaccines, are in development, but the impact of sex and age on their efficacy remains undefined. To examine sex differences in the efficacy of anti-sporozoite stage malaria vaccination, adult (10 weeks of age) or juvenile (11 days of age) male and female C3H mice were twice vaccinated with irradiated transgenic Plasmodium berghei sporozoites expressing the P. falciparum circumsporozoite (CSP) protein and 45 days post boost vaccination, mice were challenged with transgenic P. berghei via mosquito bite or intradermal challenge. Immunization with irradiated sporozoites resulted in greater protection against challenge in adult females, which was associated with greater anti-CSP antibody production and avidity, as well as greater hepatic, but not splenic, CD8+ T cell IFNƴ production in adult females than adult males. No sex differences in adaptive immune responses or protection were observed in mice vaccinated prior to puberty, suggesting a role for sex steroid hormones. Depletion of testosterone in males increased, whereas rescue of testosterone decreased, anti-CSP antibody production, the number of antigen-specific CD8+ T cells isolated from the liver, and protection following parasite challenge. Conversely, depletion of sex steroids in female mice did not alter vaccine-induced responses or protection following challenge. These data suggest that elevated testosterone concentrations in males reduce adaptive immunity and contribute to sex differences in malaria vaccine efficacy.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Esporozoítos/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antimaláricos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunização/métodos , Fígado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Baço/imunologia , Vacinação/métodos
5.
Semin Immunopathol ; 41(2): 189-194, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30298431

RESUMO

Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During a typical seasonal influenza epidemic, young children (< 10 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with either pandemic or outbreak strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza, although it is not the sole factor explaining the female-preponderance of severe disease. Small animal models of influenza virus infection illustrate that inflammatory immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There also is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection to alter outcomes. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.


Assuntos
Hormônios Esteroides Gonadais/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Caracteres Sexuais , Adolescente , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Influenza Humana/patologia , Masculino , Pessoa de Meia-Idade , Gravidez , Complicações Infecciosas na Gravidez/patologia
6.
Biol Sex Differ ; 9(1): 24, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30012205

RESUMO

BACKGROUND: Amphiregulin (AREG) is an epidermal growth factor that is a significant mediator of tissue repair at mucosal sites, including in the lungs during influenza A virus (IAV) infection. Previous research illustrates that males of reproductive ages experience less severe disease and recover faster than females following infection with IAV. METHODS: Whether males and females differentially produce and utilize AREG for pulmonary repair after IAV infection was investigated using murine models on a C57BL/6 background and primary mouse and human epithelial cell culture systems. RESULTS: Following sublethal infection with 2009 H1N1 IAV, adult female mice experienced greater morbidity and pulmonary inflammation during the acute phase of infection as well as worse pulmonary function during the recovery phase of infection than males, despite having similar virus clearance kinetics. As compared with females, AREG expression was greater in the lungs of male mice as well as in primary respiratory epithelial cells derived from mouse and human male donors, in response to H1N1 IAVs. Internalization of the epidermal growth factor receptor (EGFR) was also greater in respiratory epithelial cells derived from male than female mice. IAV infection of Areg knock-out (Areg-/-) mice eliminated sex differences in IAV pathogenesis, with a more significant role for AREG in infection of male compared to female mice. Deletion of Areg had no effect on virus replication kinetics in either sex. Gonadectomy and treatment of either wild-type or Areg-/- males with testosterone improved the outcome of IAV as compared with their placebo-treated conspecifics. CONCLUSIONS: Taken together, these data show that elevated levels of testosterone and AREG, either independently or in combination, improve resilience (i.e., repair and recovery of damaged tissue) and contribute to better influenza outcomes in males compared with females.


Assuntos
Anfirregulina/metabolismo , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae/metabolismo , Caracteres Sexuais , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Receptores ErbB/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença , Testosterona/metabolismo
7.
mBio ; 8(6)2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138308

RESUMO

Both sex (i.e., biological construct of male and female) and gender (i.e., social construct of masculine and feminine) impact the pathogenesis of diseases, including those caused by microbial infections. Following the 2015 NIH policy for consideration of sex as a biological variable in preclinical research, in 2018, authors of papers published in primary-research American Society for Microbiology (ASM) journals will be asked to report the sex of the research subjects and animals and of materials derived directly from them. To address the need for sex reporting in ASM journals, we systematically reviewed 2,928 primary-research articles published in six primary-research ASM journals (Antimicrobial Agents and Chemotherapy, Clinical and Vaccine Immunology, Infection and Immunity, Journal of Bacteriology, Journal of Virology, and mBio) in 2016. Approximately 37% of animal studies and 9% of primary cell culture papers published in 2016 would have been affected by the new sex-reporting policy. For animal studies (i.e., studies with any nonhuman vertebrate hosts), most published papers either did not report the sex of the animals or used only female animals, and a minority used only males or both sexes. For published studies using primary cells from diverse animal species (i.e., humans and nonhuman vertebrates), almost all studies failed to report the sex of donors from which the cells were isolated. We believe that reporting the sex of animals and even of the donors of derived cells could improve the rigor and reproducibility of research conducted in microbiology and immunology and published in ASM journals.


Assuntos
Revisão da Pesquisa por Pares/normas , Sexo , Animais , Humanos , Reprodutibilidade dos Testes
8.
Horm Behav ; 88: 45-51, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27816626

RESUMO

The outcome of microbial infections in mammals, including humans, is affected by the age, sex, and reproductive status of the host suggesting a role for sex steroid hormones. Testosterone, estradiol, and progesterone, signaling through their respective steroid receptors, affect the functioning of immune cells to cause differential susceptibility to parasitic, bacterial, and viral infections. Microbes, including fungi, bacteria, parasites, and viruses, can also use sex steroid hormones and manipulate sex steroid receptor signaling mechanisms to increase their own survival and replication rate. The multifaceted use of sex steroid hormones by both microbes and hosts during infection forms the basis of this review. In the arms race between microbes and hosts, both hosts and microbes have evolved to utilize sex steroid hormone signaling mechanisms for survival.


Assuntos
Estradiol/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Mamíferos/microbiologia , Progesterona/metabolismo , Transdução de Sinais/fisiologia , Testosterona/metabolismo , Animais , Suscetibilidade a Doenças , Mamíferos/metabolismo , Receptores de Esteroides/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1234-L1244, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815260

RESUMO

Influenza severity increases with age, with hospitalization and mortality rates during seasonal influenza epidemics being higher in older men than age-matched women. As it is known that with age, circulating testosterone levels decline in males, we hypothesized that reduced testosterone contributes to age-associated increases in influenza severity. A murine model was used to test this hypothesis. As in men, testosterone concentrations were lower in aged (18 mo) than young (2 mo) male C57BL/6 mice. Following inoculation with influenza A virus (IAV), aged males experienced greater morbidity, clinical disease, and pulmonary inflammation than young males, and had lower neutralizing and total anti-influenza IgG antibody responses. Peak titers of virus in the lungs did not differ between aged and young males, but virus clearance was delayed in aged males. In young males, removal of the gonads increased-whereas treatment of gonadectomized males with testosterone reduced-morbidity, clinical illness, and pulmonary pathology, but viral replication was not altered by hormone manipulation in young males. Treatment of aged males with testosterone improved survival following infection but did not alter either virus replication or pulmonary pathology. These results indicate that low concentrations of testosterone, whether induced surgically in young males or naturally occurring in aged males, negatively impact the outcome of influenza.


Assuntos
Envelhecimento/patologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Testosterona/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/efeitos dos fármacos , Imunoglobulina G/imunologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...