Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Energy Mater ; 7(4): 1421-1432, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425380

RESUMO

An inorganic wide-bandgap hole transport layer (HTL), copper(I) thiocyanate (CuSCN), is employed in inorganic planar hydrothermally deposited Sb2S3 solar cells. With excellent hole transport properties and uniform compact morphology, the solution-processed CuSCN layer suppresses the leakage current and improves charge selectivity in an n-i-p-type solar cell structure. The device without the HTL (FTO/CdS/Sb2S3/Au) delivers a modest power conversion efficiency (PCE) of 1.54%, which increases to 2.46% with the introduction of CuSCN (FTO/CdS/Sb2S3/CuSCN/Au). This PCE is a significant improvement compared with the previous reports of planar Sb2S3 solar cells employing CuSCN. CuSCN is therefore a promising alternative to expensive and inherently unstable organic HTLs. In addition, CuSCN makes an excellent optically transparent (with average transmittance >90% in the visible region) and shunt-blocking HTL layer in pinhole-prone ultrathin (<100 nm) semitransparent absorber layers grown by green and facile hydrothermal deposition. A semitransparent device is fabricated using an ultrathin Au layer (∼10 nm) with a PCE of 2.13% and an average visible transmittance of 13.7%.

3.
Adv Mater ; : e2308101, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341618

RESUMO

Photoelectrochemical (PEC) catalysis provides the most promising avenue for producing value-added chemicals and consumables from renewable precursors. Over the last decades, PEC catalysis, including reduction of renewable feedstock, oxidation of organics, and activation and functionalization of C─C and C─H bonds, are extensively investigated, opening new opportunities for employing the technology in upgrading readily available resources. However, several challenges still remain unsolved, hindering the commercialization of the process. This review offers an overview of PEC catalysis targeted at the synthesis of high-value chemicals from sustainable precursors. First, the fundamentals of evaluating PEC reactions in the context of value-added product synthesis at both anode and cathode are recalled. Then, the common photoelectrode fabrication methods that have been employed to produce thin-film photoelectrodes are highlighted. Next, the advancements are systematically reviewed and discussed in the PEC conversion of various feedstocks to produce highly valued chemicals. Finally, the challenges and prospects in the field are presented. This review aims at facilitating further development of PEC technology for upgrading several renewable precursors to value-added products and other pharmaceuticals.

4.
Small Methods ; : e2301541, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368269

RESUMO

Environmental pollution is a complex problem that threatens the health and life of animal and plant ecosystems on the planet. In this respect, the scientific community faces increasingly challenging tasks in designing novel materials with beneficial properties to address this issue. This study describes a simple yet effective synthetic protocol to obtain nickel hexacyanoferrate (Ni-HCF) nanocubes as a suitable photocatalyst, which can enable an efficient photodegradation of hazardous anthropogenic organic contaminants in water, such as antibiotics. Ni-HCF nanocubes are fully characterized and their optical and electrochemical properties are investigated. Preliminary tests are also carried out to photocatalytically remove metronidazole (MDZ), an antibiotic that is difficult to degrade and has become a common contaminant as it is widely used to treat infections caused by anaerobic microorganisms. Under simulated solar light, Ni-HCF displays substantial photocatalytic activity, degrading 94.3% of MDZ in 6 h. The remarkable performance of Ni-HCF nanocubes is attributeto a higher ability to separate charge carriers and to a lower resistance toward charge transfer, as confirmed by the electrochemical characterization. These achievements highlight the possibility of combining the performance of earth-abundant catalysts with a renewable energy source for environmental remediation, thus meeting the requirements for sustainable development.

5.
Nat Commun ; 14(1): 7280, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949914

RESUMO

The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m-2 h-1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.

6.
Small Methods ; 7(10): e2300348, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37350490

RESUMO

Basic insight into the structural evolution of electrocatalysts under operating conditions is of substantial importance for designing water oxidation catalysts. The first-row transition metal-based catalysts present state-of-the-art oxygen evolution reaction (OER) performance under alkaline conditions. Apparently, confinement has become an exciting strategy to boost the performance of these catalysts. The van der Waals (vdW) gaps of transition metal dichalcogenides are acknowledged to serve as a suitable platform to confine the first-row transition metal catalysts. This study focuses on confining Ni(OH)2 nanoparticle in the vdW gaps of 2D exfoliated SnS2 (Ex-SnS2 ) to accelerate water oxidation and to guarantee long term durability in alkaline solutions. The trends in oxidation states of Ni are probed during OER catalysis. The in situ studies confirm that the confined system produces a favorable environment for accelerated oxygen gas evolution, whereas the un-confined system proceeds with a relatively slower kinetics. The outstanding OER activity and excellent stability, with an overpotential of 300 mV at 100 mA cm-2 and Tafel slope as low as 93 mV dec-1 results from the confinement effect. This study sheds light on the OER mechanism of confined catalysis and opens up a way to develop efficient and low-cost electrocatalysts.

7.
RSC Adv ; 13(27): 18614-18626, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37346947

RESUMO

Recently, the nanostructured nickel-cobalt bimetallic oxide (NiCo2O4) material with high electrochemical activity has received intensive attention. Beside this, the biomass assisted synthesis of NiCo2O4 is gaining popularity due to its advantageous features such as being low cost, simplicity, minimal use of toxic chemicals, and environment-friendly and ecofriendly nature. The electrochemical activity of spinel NiCo2O4 is associated with its mixed metal oxidation states. Therefore, much attention has been paid to the crystal quality, morphology and tunable surface chemistry of NiCo2O4 nanostructures. In this study, we have used citrus lemon juice consisting of a variety of chemical compounds having the properties of a stabilizing agent, capping agent and chelating agent. Moreover, the presence of several acidic chemical compounds in citrus lemon juice changed the pH of the growth solution and consequently we observed surface modified and structural changes that were found to be very effective for the development of energy conversion and energy storage systems. These naturally occurring compounds in citrus lemon juice played a dynamic role in transforming the nanorod morphology of NiCo2O4 into small and well-packed nanoparticles. Hence, the prepared NiCo2O4 nanostructures exhibited a new surface-oriented nanoparticle morphology, high concentration of defects on the surface (especially oxygen vacancies), sufficient ionic diffusion and reaction of electrolytic ions, enhanced electrical conductivity, and favorable reaction kinetics at the interface. The electrocatalytic properties of the NiCo2O4 nanostructures were studied in oxygen evolution reaction (OER) at a low overpotential of 250 mV for 10 mA cm-2, Tafel slope of 98 mV dec-1, and durability of 40 h. Moreover, an asymmetric supercapacitor was produced and the obtained results indicated a high specific capacitance of (Cs) of 1519.19 F g-1, and energy density of 33.08 W h kg-1 at 0.8 A g-1. The enhanced electrochemical performance could be attributed to the favorable structural changes, surface modification, and surface crystal facet exposure due to the use of citrus lemon juice. The proposed method of transformation of nanorod to nanoparticles could be used for the design of a new generation of efficient electrocatalyst materials for energy storage and conversion uses.

8.
ACS Omega ; 8(16): 14484-14489, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125128

RESUMO

Among the existing materials for heat conversion, high-entropy alloys are of great interest due to the tunability of their functional properties. Here, we aim to produce single-phase high-entropy oxides composed of Co-Cr-Fe-Mn-Ni-O through spark plasma sintering (SPS), testing their thermoelectric (TE) properties. This material was successfully obtained before via a different technique, which requires a very long processing time. Hence, the main target of this work is to apply spark plasma sintering, a much faster and scalable process. The samples were sintered in the temperature range of 1200-1300 °C. Two main phases were formed: rock salt-structured Fm3̅m and spinel-structured Fd3̅m. Comparable transport properties were achieved via the new approach: the highest value of the Seebeck coefficient reached -112.6 µV/K at room temperature, compared to -150 µV/K reported before; electrical properties at high temperatures are close to the properties of the single-phase material (σ = 0.2148 S/cm, σ ≈ 0.2009 S/cm reported before). These results indicate that SPS can be successfully applied to produce highly efficient TE high-entropy alloys in a fast and scalable way. Further optimization is needed for the production of single-phase materials, which are expected to exhibit an even better TE functionality.

9.
ACS Nano ; 17(1): 346-354, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574462

RESUMO

Elastic strains in metallic catalysts induce enhanced selectivity for carbon dioxide reduction (CO2R) toward valuable multicarbon (C2+) products. However, under working conditions, the structure of catalysts inevitably undergoes reconstruction, hardly retaining the initial strain. Herein, we present a metal/metal oxide synthetic strategy to introduce and maintain the tensile strain in a copper/ceria heterostructure, enabled by the presence of a thin interface layer of Cu2O/CeO2. The tensile strain in the copper domain and deficient electron environment around interfacial Cu sites resulted in strengthened adsorption of carbonaceous intermediates and promoted *CO dimerization. The strain effect in the copper/ceria heterostructure leads to an improved C2+ selectivity with a maximum Faradaic efficiency of 76.4% and a half-cell power conversion efficiency of 49.1%. The fundamental insights gained from this system can facilitate the rational design of heterostructure catalysts for CO2R.

10.
Small ; 19(1): e2204765, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36354170

RESUMO

An efficient and cost-effective approach for the development of advanced catalysts has been regarded as a sustainable way for green energy utilization. The general guideline to design active and efficient catalysts for oxygen evolution reaction (OER) is to achieve high intrinsic activity and the exposure of more density of the interfacial active sites. The heterointerface is one of the most attractive ways that plays a key role in electrochemical water oxidation. Herein, atomically cluster-based heterointerface catalysts with strong metal support interaction (SMSI) between WMn2 O4 and TiO2 are designed. In this case, the WMn2 O4 nanoflakes are uniformly decorated by TiO2 particles to create electronic effect on WMn2 O4 nanoflakes as confirmed by X-ray absorption near edge fine structure. As a result, the engineered heterointerface requires an OER onset overpotential as low as 200 mV versus reversible hydrogen electrode, which is stable for up to 30 h of test. The outstanding performance and long-term durability are due to SMSI, the exposure of interfacial active sites, and accelerated reaction kinetics. To confirm the synergistic interaction between WMn2 O4 and TiO2 , and the modification of the electronic structure, high-resolution transmission electron microscopy (HR-TEM), X-ray photoemission spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) are used.

11.
ACS Omega ; 7(5): 4052-4061, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155899

RESUMO

The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.

12.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34835844

RESUMO

The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL]+ chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb3+ centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL]+ complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL]+ complexes and CDs, as well as their ability for temperature sensing. The variation of the synthetic conditions is represented herein as a tool for tuning the fluorescent response of the blue and green-emitting blocks upon heating and cooling. The revealed regularities enable developing either dual-band luminescent colloids for monitoring temperature changes within 25-50 °C through double color emission or transforming the colloids into ratiometric temperature sensors via simple concentration variation of [TbL]+ and CDs in the initial DMF solution. Novel hybrid carbon dots-terbium chelate PSS-based nanoplatform opens an avenue for a new generation of sensitive and customizable single excited dual-band nanothermometers.

13.
iScience ; 24(10): 103145, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34723162

RESUMO

Thermoelectric materials convert waste heat into electric energy. Oxyselenide-based material, specifically, p-type BiCuSeO, is one of the most promising materials for these applications. There are numerous approaches to improve the heat-to-electricity conversion performance. Usually, these approaches are applied individually, starting from the pure intrinsic material. Higher performance could, however, be reached by combining a few strategies simultaneously. In the current work, yttrium, niobium, and phosphorous substitutions on the bismuth sites in already bismuth-deficient Bi1-xCuSeO systems were investigated via density functional theory. The bismuth-deficient system was used as the reference system for further introduction of substitutional defects. The substitution with phosphorous showed a decrease of up to 40 meV (11%) in the energy gap between conduction and valence bands at the highest substitution concentration. Doping with niobium led to the system changing from a p-type to an n-type conductor, which provides a possible route to obtain n-type BiCuSeO systems.

14.
Nat Commun ; 12(1): 6089, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667176

RESUMO

Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.

15.
ACS Nano ; 15(6): 10553-10564, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34114794

RESUMO

Plasmonic nanoparticles are ideal candidates for hot-electron-assisted applications, but their narrow resonance region and limited hotspot number hindered the energy utilization of broadband solar energy. Inspired by tree branches, we designed and chemically synthesized silver fractals, which enable self-constructed hotspots and multiple plasmonic resonances, extending the broadband generation of hot electrons for better matching with the solar radiation spectrum. We directly revealed the plasmonic origin, the spatial distribution, and the decay dynamics of hot electrons on the single-particle level by using ab initio simulation, dark-field spectroscopy, pump-probe measurements, and electron energy loss spectroscopy. Our results show that fractals with acute tips and narrow gaps can support broadband resonances (400-1100 nm) and a large number of randomly distributed hotspots, which can provide unpolarized enhanced near field and promote hot electron generation. As a proof-of-concept, hot-electron-triggered dimerization of p-nitropthiophenol and hydrogen production are investigated under various irradiations, and the promoted hot electron generation on fractals was confirmed with significantly improved efficiency.

16.
J Mater Chem B ; 9(20): 4111-4119, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037068

RESUMO

Optical nanothermometers have attracted much attention due to their non-contact and precise measurement with high spatial resolution at the micro- and nanoscales. They can be applied in various fields such as micro-opto-electronics, photonics, and biomedical thermal and pH sensing, while most thermal sensors reported so far contain heavy metals or have low sensitivity. Herein, we demonstrate a highly sensitive ratiometric thermal sensor based on colloidal C-dots. C-dots exhibit dual emission originating from the band gap emission and surface-dominant emission, which show a different temperature-dependent photoluminescence (PL) response. Among different surface-functionalized C-dots, C-dots@OH exhibit an absolute thermal sensitivity of -0.082 °C-1, which is the highest among various types of ratiometric thermosensors, making it a very promising candidate for high-sensitivity, self-calibrated nanoscale thermometry. As a proof-of-concept, C-dots@OH were employed to monitor the intracellular temperature (32-42 °C), showing a clear trend for temperature variation in a single cell, indicating that C-dots could offer a powerful tool for a potential precise measurement of the intracellular temperature. They could also be used as thermal sensors for nano-electronic and optoelectronic devices.


Assuntos
Nanopartículas/química , Nanotecnologia , Pontos Quânticos/química , Termômetros , Sobrevivência Celular/efeitos dos fármacos , Coloides/química , Coloides/farmacologia , Células HEK293 , Humanos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura
17.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670807

RESUMO

The synthesis, characterization and photoreduction ability of a new class of carbon dots made from fish scales is here described. Fish scales are a waste material that contains mainly chitin, one of the most abundant natural biopolymers, and collagen. These components make the scales rich, not only in carbon, hydrogen and oxygen, but also in nitrogen. These self-nitrogen-doped carbonaceous nanostructured photocatalyst were synthesized from fish scales by a hydrothermal method in the absence of any other reagents. The morphology, structure and optical properties of these materials were investigated. Their photocatalytic activity was compared with the one of conventional nitrogen-doped carbon dots made from citric acid and diethylenetriamine in the photoreduction reaction of methyl viologen.

18.
Nanoscale ; 13(6): 3519-3527, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33566048

RESUMO

Solar-driven photoelectrochemical (PEC) hydrogen production is one of the most effective strategies for solar-to-hydrogen energy conversion. Among various types of semiconductors used for PEC anodes, colloidal quantum dots (QDs) have been widely used as new and promising absorbers for PEC and other optoelectronic devices. However, currently, most efficient optoelectronic devices contain toxic Pb/Cd elements or non-earth-abundant elements (In/Ag). It is still a challenge to produce Pb/Cd-free QDs without using any toxic and non-earth-abundant elements. Here, we synthesized SnSe QDs via a diffusion-controlled hot injection approach and further stabilized the as-prepared SnSe QDs via a cation exchange reaction. The as-synthesized Zn-stabilized SnSe QDs (SnSe/ZnSe) have an orthorhombic crystal structure with indirect bandgaps ranging from 1 to 1.37 eV. Zn stabilization can significantly decrease the number of QD surface metallic Sn bonds, thereby decreasing the number of recombination centers of defects/traps. As a proof-of-concept, SnSe/ZnSe QDs are used as light absorbers for PEC hydrogen production, leading to a saturated photocurrent density of 7 mA cm-2, which is comparable to best values reported for PEC devices based on toxic-metal-free QDs. Our results indicate that Zn-stabilized SnSe QDs have great potential for use in emerging optoelectronic devices.

19.
Mikrochim Acta ; 188(3): 77, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33566156

RESUMO

The synthesis of Co-based two-dimensional (2D) metal azolate framework nanosheets (MAF-5-CoII NS) is described using a simple hydrothermal method. The product was isostructural to MAF-5 (Zn). The as-prepared MAF-5-CoII NS exhibited high surface area (1155 m2/g), purity, and crystallinity. The MAF-5-CoII NS-modified screen-printed electrode (MAF-5-CoII NS/SPE) was used for nonenzymatic detection of glucose in diluted human blood plasma (BP) samples with phosphate buffer saline (PBS, pH 7.4) and NaOH (0.1 M, pH 13.0) solutions. The MAF-5-CoII NS nanozyme displayed good redox activity in both neutral and alkaline media with the formation of CoII/CoIII redox pair, which induced the catalytic oxidation of glucose. Under the optimized detection potential, the sensor presented a chronoamperometric current response for the oxidation of glucose with two wide concentration ranges in PBS-diluted (62.80 to 180 µM and 305 to 8055 µM) and NaOH-diluted (58.90 to 117.6 µM and 180 to 10,055 µM) BP samples, which were within the limit of blood glucose levels of diabetic patients before (4.4-7.2 mM) and after (10 mM) meals (recommended by the American Diabetes Association). The sensor has a limit of detection of ca. 0.25 and 0.05 µM, respectively, and maximum sensitivity of ca. 36.55 and 1361.65 mA/cm2/mM, respectively, in PBS- and NaOH-diluted BP samples. The sensor also displayed excellent stability in the neutral and alkaline media due to the existence of hydrophobic linkers (2-ethyl imidazole) in the MAF-5-CoII NS, good repeatability and reproducibility, and interference-free signals. Thus, MAF-5-CoII NS is a promising nanozyme for the development of the disposable type of sensor for glucose detection in human body fluids. Graphical abstract.


Assuntos
Glicemia/análise , Estruturas Metalorgânicas/química , Nanoestruturas/química , Glicemia/química , Catálise , Cobalto/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Estruturas Metalorgânicas/síntese química , Oxirredução , Reprodutibilidade dos Testes
20.
ACS Omega ; 6(2): 1073-1082, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490766

RESUMO

Carbon nanotube/polymer composites have recently received considerable attention for thermoelectric (TE) applications. The TE power factor can be significantly improved by forming composites with carbon nanotubes. However, the formation of a uniform and well-ordered nanocomposite film is still challenging because of the creation of agglomerates and the uneven distribution of nanotubes. Here, we developed a facile, efficient, and easy-processable route to produce uniform and aligned nanocomposite films of P3HT and carbon nanotube forest (CNTF). The electrical conductivity of a pristine P3HT film was improved from ∼10-7 to 160 S/cm thanks to the presence of CNTF. Also, a further boost in TE performance was achieved using two additives, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and tert-butylpyridine. By adding the additives to P3HT, the degree of interchain order increased, which facilitated the charge transport through the composite. Under the optimal conditions, the incorporation of CNTF and additives led to values of the Seebeck coefficient, electrical conductivity, and power factor up to rising 92 µV/K, 130 S/cm, and 110 µW/m K2, respectively, at a temperature of 344.15 K. The excellent TE performance of the hybrid films originates from the dramatically increased electrical conductivity and the improved Seebeck coefficient by CNTF and additives, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...