Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 96: 117512, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939493

RESUMO

Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as ß-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.


Assuntos
Organofosfonatos , Fósforo , Fósforo/química , Fósforo/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Bactérias , Organofosfonatos/química
2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834837

RESUMO

T-type calcium (CaV3) channels are involved in cardiac automaticity, development, and excitation-contraction coupling in normal cardiac myocytes. Their functional role becomes more pronounced in the process of pathological cardiac hypertrophy and heart failure. Currently, no CaV3 channel inhibitors are used in clinical settings. To identify novel T-type calcium channel ligands, purpurealidin analogs were electrophysiologically investigated. These compounds are alkaloids produced as secondary metabolites by marine sponges, and they exhibit a broad range of biological activities. In this study, we identified the inhibitory effect of purpurealidin I (1) on the rat CaV3.1 channel and conducted structure-activity relationship studies by characterizing the interaction of 119 purpurealidin analogs. Next, the mechanism of action of the four most potent analogs was investigated. Analogs 74, 76, 79, and 99 showed a potent inhibition on the CaV3.1 channel with IC50's at approximately 3 µM. No shift of the activation curve could be observed, suggesting that these compounds act like a pore blocker obstructing the ion flow by binding in the pore region of the CaV3.1 channel. A selectivity screening showed that these analogs are also active on hERG channels. Collectively, a new class of CaV3 channel inhibitors has been discovered and the structure-function studies provide new insights into the synthetic design of drugs and the mechanism of interaction with T-type CaV channels.


Assuntos
Poríferos , Ratos , Animais , Miócitos Cardíacos/metabolismo
3.
ACS Omega ; 7(5): 4550-4562, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155946

RESUMO

Being the second leading cause of death and the leading cause of disability-adjusted life years worldwide, infectious diseases remain-contrary to earlier predictions-a major consideration for the public health of the 21st century. Resistance development of microbes to antimicrobial drugs constitutes a large part of this devastating problem. The most widely spread mechanism of bacterial resistance operates through the degradation of existing ß-lactam antibiotics. Inhibition of metallo-ß-lactamases is expected to allow the continued use of existing antibiotics, whose applicability is becoming ever more limited. Herein, we describe the synthesis, the metallo-ß-lactamase inhibition activity, the cytotoxicity studies, and the NMR spectroscopic determination of the protein binding site of phosphonamidate monoesters. The expression of single- and double-labeled NDM-1 and its backbone NMR assignment are also disclosed, providing helpful information for future development of NDM-1 inhibitors. We show phosphonamidates to have the potential to become a new generation of antibiotic therapeutics to combat metallo-ß-lactamase-resistant bacteria.

4.
Mar Drugs ; 16(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513862

RESUMO

The first total synthesis of the marine bromotyrosine purpurealidin I (1) using trifluoroacetoxy protection group and its dimethylated analog (29) is reported along with 16 simplified bromotyrosine derivatives lacking the tyramine moiety. Their cytotoxicity was evaluated against the human malignant melanoma cell line (A-375) and normal skin fibroblast cells (Hs27) together with 33 purpurealidin-inspired simplified amides, and the structure⁻activity relationships were investigated. The synthesized simplified analogs without the tyramine part retained the cytotoxic activity. Purpurealidin I (1) showed no selectivity but its simplified pyridin-2-yl derivative (36) had the best improvement in selectivity (Selectivity index 4.1). This shows that the marine bromotyrosines are promising scaffolds for developing cytotoxic agents and the full understanding of the elements of their SAR and improving the selectivity requires further optimization of simplified bromotyrosine derivatives.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/química , Desenvolvimento de Medicamentos , Poríferos/química , Tirosina/análogos & derivados , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos , Humanos , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade , Tirosina/síntese química , Tirosina/farmacologia
5.
PLoS One ; 12(12): e0188811, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220359

RESUMO

In the search for novel anticancer drugs, the potassium channel KV10.1 has emerged as an interesting cancer target. Here, we report a new group of KV10.1 inhibitors, namely the purpurealidin analogs. These alkaloids are produced by the Verongida sponges and are known for their wide variety of bioactivities. In this study, we describe the synthesis and characterization of 27 purpurealidin analogs. Structurally, bromine substituents at the central phenyl ring and a methoxy group at the distal phenyl ring seem to enhance the activity on KV10.1. The mechanism of action of the most potent analog 5 was investigated. A shift of the activation curve to more negative potentials and an apparent inactivation was observed. Since KV10.1 inhibitors can be interesting anticancer drug lead compounds, the effect of 5 was evaluated on cancerous and non-cancerous cell lines. Compound 5 showed to be cytotoxic and appeared to induce apoptosis in all the evaluated cell lines.


Assuntos
4-Butirolactona/análogos & derivados , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Neoplasias/patologia , Bloqueadores dos Canais de Potássio/farmacologia , Células 3T3 , 4-Butirolactona/síntese química , 4-Butirolactona/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...