Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Neurotoxicol Teratol ; 103: 107356, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719082

RESUMO

Developmental stress, including low socioeconomic status (SES), can induce dysregulation of the hypothalamic-pituitary-adrenal axis and result in long-term changes in stress reactivity. Children in lower SES conditions often experience more stress than those in other SES groups. There are multiple model systems of early environmental stress (EES), one of which is reduced cage bedding. Here we tested the effects of both prenatal and lactational EES in rats on a range of long-term behavioral and cognitive outcomes. There were persistent reductions in body weight in the EES rats in both sexes. The behavioral results showed no effects on learning and memory using tests of spatial learning or cognitive flexibility in the Morris water maze, egocentric learning in the Cincinnati water maze, or working memory in the radial-arm maze. There were no effects on basic open-field activity, elevated zero-maze, or forced swim test, but EES rats had reduced time in the dark side of the light/dark test. When rats were drug challenged in the open-field with d-amphetamine or MK-801, there were no differential responses to d-amphetamine, but the EES group under responded compared with the drug-induced hyperactivity in the control group in both males and females. The objective was to establish a developmental stress model that induced cognitive deficits and to the extent that this method did not cause such effects it was not the model we sought. However, the data showed several long-term effects of EES, including the reduced response to the irreversible NMDA antagonist MK-801. This effect merits further investigation.

2.
Curr Res Toxicol ; 6: 100151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304257

RESUMO

For decades, regulatory guidelines for safety assessment in rodents for drugs, chemicals, pesticides, and food additives with developmental neurotoxic potential have recommended a single test of learning and memory (L&M). In recent years some agencies have requested two such tests. Given the importance of higher cognitive function to health, and the fact that different types of L&M are mediated by different brain regions assessing higher functions represents a step forward in providing better evidence-based protection against adverse brain effects. Given the myriad of tests available for assessing L&M in rodents this leads to the question of which tests best fit regulatory guidelines. To address this question, we begin by describing the central role of two types of L&M essential to all mammalian species and the regions/networks that mediate them. We suggest that the tests recommended possess characteristics that make them well suited to the needs in regulatory safety studies. By brain region, these are (1) the hippocampus and entorhinal cortex for spatial navigation, which assesses explicit L&M for reference and episodic memory and (2) the striatum and related structures for egocentric navigation, which assesses implicit or procedural memory and path integration. Of the tests available, we suggest that in this context, the evidence supports the use of water mazes, specifically, the Morris water maze (MWM) for spatial L&M and the Cincinnati water maze (CWM) for egocentric/procedural L&M. We review the evidentiary basis for these tests, describe their use, and explain procedures that optimize their sensitivity.

3.
Brain Res ; 1825: 148690, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38030104

RESUMO

The creatine (Cr)-phosphocreatine shuttle is essential for ATP homeostasis. In humans, the absence of brain Cr causes significant intellectual disability, epilepsy, and language delay. Mutations of the creatine transporter (SLC6A8) are the most common cause of Cr deficiency. In rodents, Slc6a8 deletion causes deficits in spatial learning, novel object recognition (NOR), as well as in contextual and cued freezing. The mechanisms that underlie these cognitive deficits are not known. Due to the heterogeneous nature of the brain, it is important to determine which systems are affected by a loss of Cr. In this study, we generated mice lacking Slc6a8 in GABAergic neurons by crossing Slc6a8FL mice with Gad2-Cre mice. These Gad2-specific Slc6a8 knockout (cKO) mice, along with the ubiquitous Slc6a8 KO (Slc6a8-/y), Gad2-Cre+, and wild-type (WT) mice were tested in the Morris water maze, NOR, conditioned freezing, and the radial water maze. Similar to the Slc6a8-/y mice, cKO mice had reduced contextual and cued freezing compared with WT mice. The cKO mice had a mild spatial learning deficit during the reversal phase of the MWM, however they were not as pronounced as in Slc6a8-/y mice. In NOR, the Gad2-Cre mice spent less time with the novel object, similar to the reduced novel time in the cKO mice. There were no changes in radial water maze performance. Slc6a8 deletion in GABAergic neurons is sufficient to recapitulate the conditioned freezing deficits seen in Slc6a8-/y mice.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Animais , Camundongos , Encéfalo , Disfunção Cognitiva/genética , Creatina , Fosfocreatina , Camundongos Knockout
5.
Front Neurosci ; 17: 1094218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777639

RESUMO

Introduction: Impulsivity is a symptom of attention-deficit/hyperactivity disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene (OMIM 616417) have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. "Positive control" measures were also collected in spontaneously hypertensive rats (SHRs), another animal model of ADHD. Methods: For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results: The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 s inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion: Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not.

6.
Curr Res Toxicol ; 3: 100093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393872

RESUMO

Pyrethroid pesticides are widely used and can cause long-term effects after early exposure. Epidemiological and animal studies reveal associations between pyrethroid exposure and altered cognition following prenatal and/or neonatal exposure. However, little is known about the cellular effects of such exposure. Sprague Dawley rats were gavaged with 0 or 1.0 mg/kg deltamethrin (DLM), a Type II pyrethroid, in corn oil (dose volume 5 mL/kg) once per day from postnatal day (P) 3-20 and assessed shortly after dosing ended or as adults. No effects of DLM exposure were found on striatal dopaminergic markers, nor on AMPA receptor subunits or on NMDA-NR1. However, DLM increased NMDA-NR2A and decreased NMDA-NR2B levels in the hippocampus, in males but not females. Additionally, adult hippocampal CA1 long-term potentiation was increased in DLM-treated males but not females. Potassium stimulated extracellular glutamate release in the hippocampus was not affected using in vivo microdialysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) showed increased apoptotic cells in the dentate gyrus of male rats, in the absence of changes in cleaved caspase-3 at P21. Proinflammatory cytokines interferon gamma trended up in striatum, interleukin-1ß trended down in nucleus accumbens, IL-13 trended up in hippocampus, and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO or CXCL1) was significantly increased in the hippocampus in male DLM-treated rats on P20. The data point to the developing hippocampus as a susceptible region to DLM-induced adverse effects.

7.
PLoS One ; 17(9): e0274007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112695

RESUMO

Recent studies suggest that ultra-high dose rates of proton radiation (>40 Gy/s; FLASH) confer less toxicity to exposed healthy tissue and reduce cognitive decline compared with conventional radiation dose rates (~1 Gy/s), but further preclinical data are required to demonstrate this sparing effect. In this study, postnatal day 11 (P11) rats were treated with whole brain irradiation with protons at a total dose of 0, 5, or 8 Gy, comparing a conventional dose rate of 1 Gy/s vs. a FLASH dose rate of 100 Gy/s. Beginning on P64, rats were tested for locomotor activity, acoustic and tactile startle responses (ASR, TSR) with or without prepulses, novel object recognition (NOR; 4-object version), striatal dependent egocentric learning ([configuration A] Cincinnati water maze (CWM-A)), prefrontal dependent working memory (radial water maze (RWM)), hippocampal dependent spatial learning (Morris water maze (MWM)), amygdala dependent conditioned freezing, and the mirror image CWM [configuration B (CWM-B)]. All groups had deficits in the CWM-A procedure. Weight reductions, decreased center ambulation in the open-field, increased latency on day-1 of RWM, and deficits in CWM-B were observed in all irradiated groups, except the 5 Gy FLASH group. ASR and TSR were reduced in the 8 Gy FLASH group and day-2 latencies in the RWM were increased in the FLASH groups compared with controls. There were no effects on prepulse trials of ASR or TSR, NOR, MWM, or conditioned freezing. The results suggest striatal and prefrontal cortex are sensitive regions at P11 to proton irradiation, with reduced toxicity from FLASH at 5 Gy.


Assuntos
Encéfalo , Prótons , Animais , Cognição , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley
8.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36041828

RESUMO

Opsin-3 (Opn3, encephalopsin) was the first nonvisual opsin gene discovered in mammals. Since then, several Opn3 functions have been described, and in two cases (adipose tissue, smooth muscle) light sensing activity is implicated. In addition to peripheral tissues, Opn3 is robustly expressed within the central nervous system, for which it derives its name. Despite this expression, no studies have investigated developmental or adult CNS consequences of Opn3 loss-of-function. Here, the behavioral consequences of mice deficient in Opn3 were investigated. Opn3-deficient mice perform comparably to wild-type mice in measures of motor coordination, socialization, anxiety-like behavior, and various aspects of learning and memory. However, Opn3-deficient mice have an attenuated acoustic startle reflex (ASR) relative to littermates. This deficit is not because of changes in hearing sensitivity, although Opn3 was shown to be expressed in auditory and vestibular structures, including cochlear outer hair cells. Interestingly, the ASR was not acutely light-dependent and did not vary between daytime and nighttime trials, despite known functions of Opn3 in photoreception and circadian gene amplitude. Together, these results demonstrate the first role of Opn3 on behavior, although the role of this opsin in the CNS remains largely elusive.


Assuntos
Reflexo de Sobressalto , Opsinas de Bastonetes , Estimulação Acústica , Animais , Mamíferos/metabolismo , Camundongos , Opsinas , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
9.
Genes Brain Behav ; 21(7): e12817, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985692

RESUMO

Latrophilin-3 (LPHN3) is a brain specific G-protein coupled receptor associated with increased risk of attention deficit hyperactivity disorder (ADHD) and cognitive deficits. CRISPR/Cas9 was used to generate a constitutive knockout (KO) rat of Lphn3 by deleting exon 3, based on human data that LPHN3 variants are associated with some cases of ADHD. Lphn3 KO rats are hyperactive with an attenuated response to ADHD medication and have cognitive deficits. Here, we tested KO, heterozygous (HET), and wildtype (WT) rats to determine if there was a gene-dosage effect. We tested the rats in home-cage activity starting at postnatal day (P)35 and P50, followed by tests of egocentric learning (Cincinnati water maze [CWM]), spatial learning (Morris water maze [MWM]), working memory (radial water maze [RWM]), incidental learning (novel object recognition [NOR]), acoustic startle response (ASR) habituation, tactile startle response (TSR) habituation, prepulse modification of acoustic startle, shuttle-box passive avoidance, conditioned freezing, and a mirror image version of the CWM. KO and HET rats were hyperactive. KO and HET rats had egocentric (CWM) and spatial deficits (MWM), increased startle response, and KO rats showed less conditioned freezing on contextual and cued memory; there were no effects on working memory (RWM) or passive avoidance. The selective gene-dosage effect in Lphn3 HET rats indicates that Lphn3 exhibits dominate expression on functions where it is most abundantly expressed (striatum, hippocampus) but not on behaviors mediated by regions of low expression. The data add further evidence to the impact of this synaptic protein on brain function and behavior.


Assuntos
Receptores Acoplados a Proteínas G , Reflexo de Sobressalto , Animais , Humanos , Locomoção , Aprendizagem em Labirinto/fisiologia , Mutação , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos , Reflexo de Sobressalto/genética
10.
Transl Psychiatry ; 12(1): 22, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039487

RESUMO

Prenatal stress (PS) is associated with increased vulnerability to affective disorders. Transplacental glucocorticoid passage and stress-induced maternal environment alterations are recognized as potential routes of transmission that can fundamentally alter neurodevelopment. However, molecular mechanisms underlying aberrant emotional outcomes or the individual contributions intrauterine stress versus maternal environment play in shaping these mechanisms remain unknown. Here, we report anxiogenic behaviors, anhedonia, and female hypothalamic-pituitary-adrenal axis hyperactivity as a consequence of psychosocial PS in mice. Evidence of fetal amygdala programming precedes these abnormalities. In adult offspring, we observe amygdalar transcriptional changes demonstrating sex-specific dysfunction in synaptic transmission and neurotransmitter systems. We find these abnormalities are primarily driven by in-utero stress exposure. Importantly, maternal care changes postnatally reverse anxiety-related behaviors and partially rescue gene alterations associated with neurotransmission. Our data demonstrate the influence maternal environment exerts in shaping offspring emotional development despite deleterious effects of intrauterine stress.


Assuntos
Sistema Hipófise-Suprarrenal , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Desenvolvimento Fetal , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Gravidez , Estresse Psicológico/complicações
11.
Neurosci Biobehav Rev ; 132: 621-637, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848247

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Modelos Animais de Doenças , Camundongos , Ratos , Ratos Endogâmicos SHR , Roedores
12.
Neurobiol Dis ; 158: 105456, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352385

RESUMO

Latrophilins (LPHNs) are adhesion G protein-coupled receptors with three isoforms but only LPHN3 is brain specific (caudate, prefrontal cortex, dentate, amygdala, and cerebellum). Variants of LPHN3 are associated with ADHD. Null mutations of Lphn3 in rat, mouse, zebrafish, and Drosophila result in hyperactivity, but its role in learning and memory (L&M) is largely unknown. Using our Lphn3 knockout (KO) rats we examined the cognitive abilities, long-term potentiation (LTP) in CA1, NMDA receptor expression, and neurohistology from heterozygous breeding pairs. KO rats were impaired in egocentric L&M in the Cincinnati water maze, spatial L&M and cognitive flexibility in the Morris water maze (MWM), with no effects on conditioned freezing, novel object recognition, or temporal order recognition. KO-associated locomotor hyperactivity had no effect on swim speed. KO rats had reduced early-LTP but not late-LTP and had reduced hippocampal NMDA-NR1 expression. In a second experiment, KO rats responded to a light prepulse prior to an acoustic startle pulse, reflecting visual signal detection. In a third experiment, KO rats given extra MWM pretraining and hidden platform overtraining showed no evidence of reaching WT rats' levels of learning. Nissl histology revealed no structural abnormalities in KO rats. LPHN3 has a selective effect on egocentric and allocentric L&M without effects on conditioned freezing or recognition memory.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Ratos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Cognição , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Aprendizagem em Labirinto , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biossíntese , Reconhecimento Psicológico , Reflexo de Sobressalto/genética , Memória Espacial
13.
Genes Brain Behav ; 20(8): e12767, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427038

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3-/- ) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. "Positive control" measures on the same tasks were measured in an accepted animal model of ADHD-the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3-/- rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Modelos Animais de Doenças , Função Executiva , Animais , Feminino , Masculino , Ratos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Deleção de Genes , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Comportamento Espacial
14.
Neurotoxicol Teratol ; 87: 107018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34256163

RESUMO

Developmental neurotoxicity (DNT) studies could benefit from revisions to study design, data analysis, and some behavioral test methods to enhance reproducibility. The Environmental Protection Agency (EPA) reviewed 69 studies submitted to the Office of Pesticide Programs. Two of the behavioral tests identified the lowest observable adverse effect level (LOAEL) 20 and 13 times, respectively, while the other two tests identified the LOAEL only 3 and 4 times, respectively. The EPA review showed that the functional observational battery (FOB) was least effective at detecting the LOAEL, whereas tests of learning and memory (L&M) had methodological shortcomings. Human neurodevelopmental toxicity studies over the past 30 years show that most of the adverse effects are on higher cognitive functions such as L&M. The results of human studies together with structure-function relationships from neuroscience, suggest that tests of working memory, spatial navigation/memory, and egocentric navigation/memory should be added to guideline studies. Collectively, the above suggest that EPA and EU DNT studies would better reflect human findings and be more relevant to children by aligning L&M tests to the same domains that are affected in children, removing less useful methods (FOB), and using newer statistical models to better account for random factors of litter and litter × sex. Common issues in study design and data analyses are discussed: sample size, random group assignment, blinding, elimination of subjective rating methods, avoiding confirmation bias, more complete reporting of species, housing, test protocols, age, test order, and litter effects. Litter in DNT studies should at least be included as a random factor in ANOVA models and may benefit from inclusion of litter × sex as random factors.


Assuntos
Cognição/efeitos dos fármacos , Síndromes Neurotóxicas/tratamento farmacológico , Memória Espacial/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos , Testes de Toxicidade , Animais , Cognição/fisiologia , Humanos , Projetos de Pesquisa , Testes de Toxicidade/métodos
15.
Neurosci Biobehav Rev ; 127: 619-629, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34022279

RESUMO

Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Encéfalo/metabolismo , Humanos
16.
Neurotoxicol Teratol ; 87: 106983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33848594

RESUMO

Deltamethrin (DLM) is a Type II pyrethroid pesticide widely used in agriculture, homes, public spaces, and medicine. Epidemiological studies report that increased pyrethroid exposure during development is associated with neurobehavioral disorders. This raises concern about the safety of these chemicals for children. Few animal studies have explored the long-term effects of developmental exposure to DLM on the brain. Here we review the CNS effects of pyrethroids, with emphasis on DLM. Current data on behavioral and cognitive effects after developmental exposure are emphasized. Although, the acute mechanisms of action of DLM are known, how these translate to long-term effects is only beginning to be understood. But existing data clearly show there are lasting effects on locomotor activity, acoustic startle, learning and memory, apoptosis, and dopamine in mice and rats after early exposure. The most consistent neurochemical findings are reductions in the dopamine transporter and the dopamine D1 receptor. The data show that DLM is developmentally neurotoxic but more research on its mechanisms of long-term effects is needed.


Assuntos
Comportamento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Animais , Humanos , Aprendizagem/efeitos dos fármacos
17.
Neurotoxicol Teratol ; 84: 106956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524508

RESUMO

Two developmental stressors were compared in preweaning rats exposed to either one stressor or both. Stressors were barren cage rearing or maternal separation (pup isolation). 40 gravid Sprague-Dawley CD/IGS rats were randomly assigned to two cage conditions: standard (Std) cage or barren cage (Bar), 20 litters/condition throughout gestation and lactation. After delivery, litters were randomly culled to 4 males and 4 females. The second stressor was maternal separation: Two male/female pairs per litter were isolated from their dam 4 h/day (Iso) and two pairs were not (Norm). Hence, there were 4 conditions: Std-Norm, Std-Iso, Bar-Norm, and Bar-Iso. One pair/litter/stress condition received the following: elevated zero-maze (EZM), open-field, swim channel, Cincinnati water maze, conditioned fear, and open-field with methamphetamine challenge. The second pair/litter/condition received the light-dark test, swim channel, Morris water maze, forced swim, and EZM with diazepam challenge. Barren rearing reduced EZM time-in-open, whereas isolation rearing reduced open-field activity in males and increased it in females. Effects on straight channel swimming were minor. In the Cincinnati water maze test of egocentric learning, isolation rearing increased errors whereas barren cage housing reduced errors in combination with normal rearing. Barren cage with maternal separation (pup isolation) increased Cincinnati water maze escape latency but not errors. Barren cage housing reduced hyperactivity in response to methamphetamine. Isolation rearing increased time in open in the EZM after diazepam challenge. Trends were seen in the Morris water maze. These suggested that barren cage and isolation rearing in combination reduced latency on acquisition on days 1 and 2 in males, whereas females had increased latency on days 2 and 3. Combined exposure to two developmental stressors did not induce additive or synergistic effects, however the data show that these stressors had long-term effects with some evidence that the combination of both caused effects when either stressor alone did not, but synergism was not observed.


Assuntos
Comportamento Animal/efeitos dos fármacos , Meio Ambiente , Isolamento Social , Estresse Psicológico/psicologia , Animais , Animais Recém-Nascidos , Ansiedade de Separação/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Medo/psicologia , Feminino , Crescimento/efeitos dos fármacos , Masculino , Privação Materna , Aprendizagem em Labirinto/efeitos dos fármacos , Metanfetamina/farmacologia , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Natação/psicologia
18.
Neurotox Res ; 39(3): 543-555, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33608816

RESUMO

The effects of permethrin (PRM) and deltamethrin (DLM) on acoustic or light prepulse inhibition of the acoustic startle response (ASR) and tactile startle response (TSR) were studied in adult male Sprague Dawley rats. Preliminary studies were conducted to optimize the parameters of light and acoustic prepulse inhibition of ASR and TSR. Once these parameters were set, a new group of rats was administered PRM (0 or 90 mg/kg) or DLM (0 or 25 mg/kg) by gavage in 5 mL/kg corn oil. ASR and TSR were assessed using acoustic or light prepulses 6, 8, and 12 h after PRM and 2, 4, and 6 h after DLM exposure. PRM increased ASR 6 h post-treatment with no interaction with acoustic prepulse levels and with no effect on TSR. When light was used as the prepulse, PRM increased ASR and TSR at 6 h with no interaction with prepulse levels. DLM decreased ASR and TSR on trials without prepulses but not on trials with acoustic prepulses. DLM also decreased ASR when light prepulses were present 4 h post-treatment. A final experiment assessed whether the house light in the test cabinet affected ASR and TSR after PRM or DLM exposure. Rats had increased ASR and TSR when house lights were on compared with when they were off, but lighting did not differentially interact with PRM or DLM. Light and acoustic prepulses of ASR and TSR have different effects depending on the test agent and the test parameters.


Assuntos
Estimulação Acústica/efeitos adversos , Nitrilas/farmacologia , Permetrina/farmacologia , Estimulação Física/efeitos adversos , Inibição Pré-Pulso/efeitos dos fármacos , Piretrinas/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Estimulação Acústica/métodos , Fatores Etários , Animais , Feminino , Inseticidas/farmacologia , Masculino , Estimulação Física/métodos , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia
19.
Front Toxicol ; 3: 629229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295117

RESUMO

There is a spectrum of approaches to neurotoxicological science from high-throughput in vitro cell-based assays, through a variety of experimental animal models to human epidemiological and clinical studies. Each level of analysis has its own advantages and limitations. Experimental animal models give essential information for neurobehavioral toxicology, providing cause-and-effect information regarding risks of neurobehavioral dysfunction caused by toxicant exposure. Human epidemiological and clinical studies give the closest information to characterizing human risk, but without randomized treatment of subjects to different toxicant doses can only give information about association between toxicant exposure and neurobehavioral impairment. In vitro methods give much needed high throughput for many chemicals and mixtures but cannot provide information about toxicant impacts on behavioral function. Crucial to the utility of experimental animal model studies is cross-species translation. This is vital for both risk assessment and mechanistic determination. Interspecies extrapolation is important to characterize from experimental animal models to humans and between different experimental animal models. This article reviews the literature concerning extrapolation of neurobehavioral toxicology from established rat models to humans and from zebrafish a newer experimental model to rats. The functions covered include locomotor activity, emotion, and cognition and the neurotoxicants covered include pesticides, metals, drugs of abuse, flame retardants and polycyclic aromatic hydrocarbons. With more complete understanding of the strengths and limitations of interspecies translation, we can better use animal models to protect humans from neurobehavioral toxicity.

20.
Sci Rep ; 10(1): 21584, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299021

RESUMO

Proton radiotherapy causes less off-target effects than X-rays but is not without effect. To reduce adverse effects of proton radiotherapy, a model of cognitive deficits from conventional proton exposure is needed. We developed a model emphasizing multiple cognitive outcomes. Adult male rats (10/group) received a single dose of 0, 11, 14, 17, or 20 Gy irradiation (the 20 Gy group was not used because 50% died). Rats were tested once/week for 5 weeks post-irradiation for activity, coordination, and startle. Cognitive assessment began 6-weeks post-irradiation with novel object recognition (NOR), egocentric learning, allocentric learning, reference memory, and proximal cue learning. Proton exposure had the largest effect on activity and prepulse inhibition of startle 1-week post-irradiation that dissipated each week. 6-weeks post-irradiation, there were no effects on NOR, however proton exposure impaired egocentric (Cincinnati water maze) and allocentric learning and caused reference memory deficits (Morris water maze), but did not affect proximal cue learning or swimming performance. Proton groups also had reduced striatal levels of the dopamine transporter, tyrosine hydroxylase, and the dopamine receptor D1, effects consistent with egocentric learning deficits. This new model will facilitate investigations of different proton dose rates and drugs to ameliorate the cognitive sequelae of proton radiotherapy.


Assuntos
Comportamento Animal/efeitos da radiação , Cognição/efeitos da radiação , Irradiação Craniana , Atividade Motora/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Aprendizagem/efeitos da radiação , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Memória/efeitos da radiação , Inibição Pré-Pulso/efeitos da radiação , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...