Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 223: 1-15, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242384

RESUMO

NMR relaxation experiments provide residue-specific insights into the structural dynamics of proteins. Here, we present an optimized set of sensitivity-enhanced 15N R1 and R1ρ relaxation experiments applicable to fully protonated proteins. The NMR pulse sequences are conceptually similar to the set of TROSY-based sequences and their HSQC counterpart (Lakomek et al., J. Biomol. NMR 2012). Instead of the TROSY read-out scheme, a sensitivity-enhanced HSQC read-out scheme is used, with improved and easier optimized water suppression. The presented pulse sequences are applied on the cytoplasmic domain of the SNARE protein Synpatobrevin-2 (Syb-2), which is intrinsically disordered in its monomeric pre-fusion state. A two-fold increase in the obtained signal-to-noise ratio is observed for this intrinsically disordered protein, therefore offering a four-fold reduction of measurement time compared to the TROSY-detected version. The inter-scan recovery delay can be shortened to two seconds. Pulse sequences were tested at 600 MHz and 1200 MHz 1H Larmor frequency, thus applicable over a wide magnetic field range. A comparison between protonated and deuterated protein samples reveals high agreement, indicating that reliable 15N R1 and R1ρ rate constants can be extracted for fully protonated and deuterated samples. The presented pulse sequences will benefit not only for IDPs but also for an entire range of low and medium-sized proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Imageamento por Ressonância Magnética , Campos Magnéticos , Razão Sinal-Ruído , Água
2.
J Mol Biol ; 435(10): 168069, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003471

RESUMO

The neuronal SNARE protein SNAP25a (isoform 2) forms part of the SNARE complex eliciting synaptic vesicle fusion during neuronal exocytosis. While the post-fusion cis-SNARE complex has been studied extensively, little is known about the pre-fusion conformation of SNAP25a. Here we analyze monomeric SNAP25a by NMR spectroscopy, further supported by small-angle X-ray scattering (SAXS) experiments. SAXS data indicate that monomeric SNAP25 is more compact than a Gaussian chain but still a random coil. NMR shows that for monomeric SNAP25a, before SNAP25a interacts with its SNARE partners to drive membrane fusion, only the N-terminal part (region A5 to V36) of the first SNARE motif, SN1 (L11 - L81), is helical, comprising two α-helices (ranging from A5 to Q20 and S25 toV36). From E37 onwards, SNAP25a is mostly disordered and displays high internal flexibility, including the C-terminal part of SN1, almost the entire second SNARE motif (SN2, N144-A199), and the connecting loop region. Apart from the N-terminal helices, only the C-termini of both SN1 (E73 - K79) and SN2 (region T190 - A199), as well as two short regions in the connecting loop (D99 - K102 and E123 - M127) show a weak α-helical propensity (α-helical population < 25%). We speculate that the N-terminal helices (A5 to Q20 and S25 to V36) which constitute the N-terminus of SN1 act as a nucleation site for initiating SNARE zippering.


Assuntos
Fusão de Membrana , Neurônios , Proteínas SNARE , Neurônios/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Proteínas SNARE/metabolismo , Difração de Raios X , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...