Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2778: 345-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478288

RESUMO

Biological nanopores incorporated into synthetic membranes are widely used for single-molecule analytical applications such as DNA sequencing. The ability to engineer custom membrane proteins with a pore would allow the generation of a multitude of nanopores for the sensing/sequencing of small molecules and (bio)polymers. The de novo design of transmembrane ß-barrel pores has recently enabled the generation of nanopores with custom size, shape, and properties. In this chapter, I describe the rationale of transmembrane ß-barrel design and computational methods to assemble the backbones, design sequences, and select the designs for experimental validation.


Assuntos
Proteínas de Membrana , Nanoporos
2.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187589

RESUMO

A general method for designing proteins to bind and sense any small molecule of interest would be widely useful. Due to the small number of atoms to interact with, binding to small molecules with high affinity requires highly shape complementary pockets, and transducing binding events into signals is challenging. Here we describe an integrated deep learning and energy based approach for designing high shape complementarity binders to small molecules that are poised for downstream sensing applications. We employ deep learning generated psuedocycles with repeating structural units surrounding central pockets; depending on the geometry of the structural unit and repeat number, these pockets span wide ranges of sizes and shapes. For a small molecule target of interest, we extensively sample high shape complementarity pseudocycles to generate large numbers of customized potential binding pockets; the ligand binding poses and the interacting interfaces are then optimized for high affinity binding. We computationally design binders to four diverse molecules, including for the first time polar flexible molecules such as methotrexate and thyroxine, which are expressed at high levels and have nanomolar affinities straight out of the computer. Co-crystal structures are nearly identical to the design models. Taking advantage of the modular repeating structure of pseudocycles and central location of the binding pockets, we constructed low noise nanopore sensors and chemically induced dimerization systems by splitting the binders into domains which assemble into the original pseudocycle pocket upon target molecule addition.

3.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38187764

RESUMO

Transmembrane ß-barrels (TMBs) are widely used for single molecule DNA and RNA sequencing and have considerable potential for a broad range of sensing and sequencing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels such as CsgG, which have evolved to carry out functions very different from sensing, and hence provide sub-optimal starting points. In contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to the design of transmembrane ß-barrel pores with different diameter and pore geometry. NMR and crystallographic characterization shows that the designs are stably folded with structures close to the design models. We report the first examples of de novo designed TMBs with 10, 12 and 14 stranded ß-barrels. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 pS (~0.5 nm pore diameter) to 430 pS (~1.1 nm pore diameter), and can be converted into sensitive small-molecule sensors with high signal to noise ratio. The capability to generate on demand ß-barrel pores of defined geometry opens up fundamentally new opportunities for custom engineering of sequencing and sensing technologies.

4.
Protein Sci ; 31(11): e4405, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36305767

RESUMO

While native scaffolds offer a large diversity of shapes and topologies for enzyme engineering, their often unpredictable behavior in response to sequence modification makes de novo generated scaffolds an exciting alternative. Here we explore the customization of the backbone and sequence of a de novo designed eight stranded ß-barrel protein to create catalysts for a retro-aldolase model reaction. We show that active and specific catalysts can be designed in this fold and use directed evolution to further optimize activity and stereoselectivity. Our results support previous suggestions that different folds have different inherent amenability to evolution and this property could account, in part, for the distribution of natural enzymes among different folds.


Assuntos
Engenharia de Proteínas , Proteínas , Proteínas/genética , Engenharia de Proteínas/métodos
5.
Science ; 371(6531)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602829

RESUMO

Transmembrane ß-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow ß-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.


Assuntos
Simulação por Computador , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica em Folha beta , Engenharia de Proteínas , Sequência de Aminoácidos , Cristalografia por Raios X , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Micelas , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
6.
Nat Commun ; 12(1): 856, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558528

RESUMO

Through the efforts of many groups, a wide range of fluorescent protein reporters and sensors based on green fluorescent protein and its relatives have been engineered in recent years. Here we explore the incorporation of sensing modalities into de novo designed fluorescence-activating proteins, called mini-fluorescence-activating proteins (mFAPs), that bind and stabilize the fluorescent cis-planar state of the fluorogenic compound DFHBI. We show through further design that the fluorescence intensity and specificity of mFAPs for different chromophores can be tuned, and the fluorescence made sensitive to pH and Ca2+ for real-time fluorescence reporting. Bipartite split mFAPs enable real-time monitoring of protein-protein association and (unlike widely used split GFP reporter systems) are fully reversible, allowing direct readout of association and dissociation events. The relative ease with which sensing modalities can be incorporated and advantages in smaller size and photostability make de novo designed fluorescence-activating proteins attractive candidates for optical sensor engineering.


Assuntos
Proteínas Luminescentes/metabolismo , Acetilcolina/metabolismo , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Fluorescência , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/química , Modelos Moleculares
7.
Nature ; 561(7724): 485-491, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209393

RESUMO

The regular arrangements of ß-strands around a central axis in ß-barrels and of α-helices in coiled coils contrast with the irregular tertiary structures of most globular proteins, and have fascinated structural biologists since they were first discovered. Simple parametric models have been used to design a wide range of α-helical coiled-coil structures, but to date there has been no success with ß-barrels. Here we show that accurate de novo design of ß-barrels requires considerable symmetry-breaking to achieve continuous hydrogen-bond connectivity and eliminate backbone strain. We then build ensembles of ß-barrel backbone models with cavity shapes that match the fluorogenic compound DFHBI, and use a hierarchical grid-based search method to simultaneously optimize the rigid-body placement of DFHBI in these cavities and the identities of the surrounding amino acids to achieve high shape and chemical complementarity. The designs have high structural accuracy and bind and fluorescently activate DFHBI in vitro and in Escherichia coli, yeast and mammalian cells. This de novo design of small-molecule binding activity, using backbones custom-built to bind the ligand, should enable the design of increasingly sophisticated ligand-binding proteins, sensors and catalysts that are not limited by the backbone geometries available in known protein structures.


Assuntos
Compostos de Benzil/química , Fluorescência , Imidazolinas/química , Proteínas/química , Animais , Compostos de Benzil/análise , Células COS , Chlorocebus aethiops , Escherichia coli , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligação de Hidrogênio , Imidazolinas/análise , Ligantes , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Leveduras
8.
J Biol Chem ; 289(42): 29086-96, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25160617

RESUMO

The enzymes of the ß-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Leucina/biossíntese , Malato Desidrogenase/metabolismo , Catálise , Cromossomos Bacterianos , Clonagem Molecular , Fluorometria , Fenótipo , Filogenia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...