Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 12(6)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545455

RESUMO

The human gastrointestinal microbiota (HGM) is known for its rich diversity of bacterial species and strains. Yet many studies stop at characterizing the HGM at the family level. This is mainly due to lack of adequate methods for a high-resolution profiling of the HGM. One way to characterize the strain diversity of the HGM is to look for strain-specific functional markers. Here, we propose using type II toxin-antitoxin systems (TAS). To identify TAS systems in the HGM, we previously developed the software TAGMA. This software was designed to detect the TAS systems, MazEF and RelBE, in lactobacilli and bifidobacteria. In this study, we updated the gene catalog created previously and used it to test our software anew on 1346 strains of bacteria, which belonged to 489 species and 49 genera. We also sequenced the genomes of 20 fecal samples and analyzed the results with TAGMA. Although some differences were detected at the strain level, the results showed no particular difference in the bacterial species between our method and other classic analysis software. These results support the use of the updated catalog of genes encoding type II TAS as a useful tool for computer-assisted species and strain characterization of the HGM.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal , Intestinos/microbiologia , Metagenoma , Metagenômica , Sistemas Toxina-Antitoxina/genética , Bactérias/classificação , Bases de Dados Genéticas , Fezes/microbiologia , Perfilação da Expressão Gênica , Humanos , Ribotipagem
2.
PeerJ ; 7: e6554, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863681

RESUMO

Recent research has indicated that in addition to the unique genotype each individual may also have a unique microbiota composition. Difference in microbiota composition may emerge from both its species and strain constituents. It is important to know the precise composition especially for the gut microbiota (GM), since it can contribute to the health assessment, personalized treatment, and disease prevention for individuals and groups (cohorts). The existing methods for species and strain composition in microbiota are not always precise and usually not so easy to use. Probiotic bacteria of the genus Bifidobacterium and Lactobacillus make an essential component of human GM. Previously we have shown that in certain Bifidobacterium and Lactobacillus species the RelBE and MazEF superfamily of toxin-antitoxin (TA) systems may be used as functional biomarkers to differentiate these groups of bacteria at the species and strain levels. We have composed a database of TA genes of these superfamily specific for all lactobacilli and bifidobacteria species with complete genome sequence and confirmed that in all Lactobacillus and Bifidobacterium species TA gene composition is species and strain specific. To analyze composition of species and strains of two bacteria genera, Bifidobacterium and Lactobacillus, in human GM we developed TAGMA (toxin antitoxin genes for metagenomes analyses) software based on polymorphism in TA genes. TAGMA was tested on gut metagenomic samples. The results of our analysis have shown that TAGMA can be used to characterize species and strains of Lactobacillus and Bifidobacterium in metagenomes.

3.
BioData Min ; 11: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450127

RESUMO

BACKGROUND: Metagenomic surveys of human microbiota are becoming increasingly widespread in academic research as well as in food and pharmaceutical industries and clinical context. Intuitive tools for investigating experimental data are of high interest to researchers. RESULTS: Knomics-Biota is a web-based resource for exploratory analysis of human gut metagenomes. Users can generate and share analytical reports corresponding to common experimental schemes (like case-control study or paired comparison). Interactive visualizations and statistical analysis are provided in association with the external factors and in the context of thousands of publicly available datasets arranged into thematic collections. The web-service is available at https://biota.knomics.ru. CONCLUSIONS: Knomics-Biota web service is a comprehensive tool for interactive metagenomic data analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...