Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2825: 67-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913303

RESUMO

Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.


Assuntos
Instabilidade Cromossômica , Mosaicismo , Neoplasias , Humanos , Neoplasias/genética , Aberrações Cromossômicas
2.
Methods Mol Biol ; 2825: 239-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913313

RESUMO

Quantifying signals substantially increases the efficiency of fluorescence in situ hybridization (FISH). Quantitative FISH analysis or QFISHing may be useful for differentiation between chromosome loss and chromosomal associations, detection of amplification of chromosomal loci, and/or quantification of chromosomal heteromorphisms (chromosomal DNAs). The latter is applicable to uncovering the parental origin of chromosomes, which is an important FISH application in genome research. In summary, one may acknowledge that QFISHing has a variety of applications in cancer chromosome research. Accordingly, a protocol for this technique is certainly required. Here, QFISHing protocol is described step-by-step.


Assuntos
Hibridização in Situ Fluorescente , Hibridização in Situ Fluorescente/métodos , Humanos , Cromossomos/genética , Animais
3.
Mol Cytogenet ; 16(1): 1, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600272

RESUMO

Molecular cytogenetic and cytogenomic studies have made a contribution to genetics of epilepsy. However, current genomic research of this devastative condition is generally focused on the molecular genetic aspects (i.e. gene hunting, detecting mutations in known epilepsy-associated genes, searching monogenic causes of epilepsy). Nonetheless, chromosomal abnormalities and copy number variants (CNVs) represent an important part of genetic defects causing epilepsy. Moreover, somatic chromosomal mosaicism and genome/chromosome instability seem to be a possible mechanism for a wide spectrum of epileptic conditions. This idea becomes even more attracting taking into account the potential of molecular neurocytogenetic (neurocytogenomic) studies of the epileptic brain. Unfortunately, analyses of chromosome numbers and structure in the affected brain or epileptogenic brain foci are rarely performed. Therefore, one may conclude that cytogenomic area of genomic epileptology is poorly researched. Accordingly, molecular cytogenetic and cytogenomic studies of the clinical cohorts and molecular neurocytogenetic analyses of the epileptic brain appear to be required. Here, we have performed a theoretical analysis to define the targets of the aforementioned studies and to highlight future directions for molecular cytogenetic and cytogenomic research of epileptic disorders in the widest sense. To succeed, we have formed a consortium, which is planned to perform at least a part of suggested research. Taking into account the nature of the communication, "cytogenomic epileptology" has been introduced to cover the research efforts in this field of medical genomics and epileptology. Additionally, initial results of studying cytogenomic variations in the Russian neurodevelopmental cohort are reviewed with special attention to epilepsy. In total, we have concluded that (i) epilepsy-associated cytogenomic variations require more profound research; (ii) ontological analyses of epilepsy genes affected by chromosomal rearrangements and/or CNVs with unraveling pathways implicating epilepsy-associated genes are beneficial for epileptology; (iii) molecular neurocytogenetic (neurocytogenomic) analysis of postoperative samples are warranted in patients suffering from epileptic disorders.

4.
Methods Mol Biol ; 2561: 191-204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399271

RESUMO

Fluorescence in situ hybridization (FISH) is the method of choice for visualizing chromosomal DNA in post-mitotic cells. The availability of chromosome-enumeration (centromeric), site-specific, and multicolor-banding DNA probes offers opportunities to uncover genomic changes, at the chromosomal level, in single interphase nuclei. Alzheimer's disease (AD) has been associated repeatedly with (sub)chromosome instability and aneuploidy, likely affecting the brain. Although the types and rates of chromosome instability in the AD brain remain a matter of debate, molecular cytogenetic analysis of brain cells appears to be important for uncovering mechanisms of neurodegeneration. Here, we describe a FISH protocol for studying chromosome instability and aneuploidy in the AD brain.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Aneuploidia , Encéfalo , Instabilidade Cromossômica , Hibridização in Situ Fluorescente/métodos
5.
Mol Cytogenet ; 15(1): 45, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36266706

RESUMO

It is hard to believe that all the cells of a human brain share identical genomes. Indeed, single cell genetic studies have demonstrated intercellular genomic variability in the normal and diseased brain. Moreover, there is a growing amount of evidence on the contribution of somatic mosaicism (the presence of genetically different cell populations in the same individual/tissue) to the etiology of brain diseases. However, brain-specific genomic variations are generally overlooked during the research of genetic defects associated with a brain disease. Accordingly, a review of brain-specific somatic mosaicism in disease context seems to be required. Here, we overview gene mutations, copy number variations and chromosome abnormalities (aneuploidy, deletions, duplications and supernumerary rearranged chromosomes) detected in the neural/neuronal cells of the diseased brain. Additionally, chromosome instability in non-cancerous brain diseases is addressed. Finally, theoretical analysis of possible mechanisms for neurodevelopmental and neurodegenerative disorders indicates that a genetic background for formation of somatic (chromosomal) mosaicism in the brain is likely to exist. In total, somatic mosaicism affecting the central nervous system seems to be a mechanism of brain diseases.

6.
Mol Cytogenet ; 15(1): 8, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248137

RESUMO

BACKGROUND: Klinefelter syndrome is a common chromosomal (aneuploidy) disorder associated with an extra X chromosome in males. Regardless of numerous studies dedicated to somatic gonosomal mosaicism, Klinefelter syndrome mosaicism (KSM) has not been systematically addressed in clinical cohorts. Here, we report on the evaluation of KSM in a large cohort of boys with neurodevelopmental disorders. Furthermore, these data have been used for an extension of the hypothesis, which we have recently proposed in a report on Turner's syndrome mosaicism in girls with neurodevelopmental disorders. RESULTS: Klinefelter syndrome-associated karyotypes were revealed in 49 (1.1%) of 4535 boys. Twenty one boys (0.5%) were non-mosaic 47,XXY individuals. KSM was found in 28 cases (0.6%) and manifested as mosaic aneuploidy (50,XXXXXY; 49,XXXXY; 48,XXXY; 48,XXYY; 47,XXY; and 45,X were detected in addition to 47,XXY/46,XY) and mosaic supernumerary marker chromosomes derived from chromosome X (ring chromosomes X and rearranged chromosomes X). It is noteworthy that KSM was concomitant with Rett-syndrome-like phenotypes caused by MECP2 mutations in 5 boys (0.1%). CONCLUSION: Our study provides data on the occurrence of KSM in neurodevelopmental disorders among males. Accordingly, it is proposed that KSM may be a possible element of pathogenic cascades in psychiatric and neurodegenerative diseases. These observations allowed us to extend the hypothesis proposed in our previous report on the contribution of somatic gonosomal mosaicism (Turner's syndrome mosaicism) to the etiology of neurodevelopmental disorders. Thus, it seems to be important to monitor KSM (a possible risk factor or a biomarker for adult-onset multifactorial brain diseases) and analysis of neuromarkers for aging in individuals with Klinefelter syndrome. Cases of two or more supernumerary chromosomes X were all associated with KSM. Finally, Rett syndrome-like phenotypes associated with KSM appear to be more common in males with neurodevelopmental disorders than previously recognized.

8.
Genes (Basel) ; 13(2)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35205244

RESUMO

MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive "silicon-on-insulator"-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal-oxide-semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography. In our experiments described herein, we demonstrate the revelation of ASD-associated miRNAs in human plasma with the SOI-NS, whose sensor elements were sensitized with oligonucleotide probes. In order to determine the concentration sensitivity of the SOI-NS, experiments on the detection of synthetic DNA analogues of autism-associated miRNAs in purified buffer were performed. The lower limit of miRNA detection attained in our experiments amounted to 10-17 M.


Assuntos
Transtorno Autístico , Técnicas Biossensoriais , MicroRNAs , Nanofios , Transtorno Autístico/genética , Biomarcadores , Criança , Humanos , MicroRNAs/genética , Nanofios/química , Silício/química
9.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641523

RESUMO

MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).


Assuntos
Transtorno do Espectro Autista/sangue , Proteínas Sanguíneas/genética , MicroRNA Circulante/sangue , Microscopia de Força Atômica/instrumentação , Adulto , Proteínas Sanguíneas/metabolismo , Criança , MicroRNA Circulante/metabolismo , Feminino , Humanos , Masculino , Microscopia de Força Atômica/métodos , Pessoa de Meia-Idade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/sangue , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Curr Genomics ; 22(2): 75-78, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34220294

RESUMO

With the introduction of systems theory to genetics, numerous opportunities for genomic research have been identified. Consequences of DNA sequence variations are systematically evaluated using the network- or pathway-based analysis, a technological basis of systems biology or, more precisely, systems genomics. Despite comprehensive descriptions of advantages offered by systems genomic approaches, pathway-based analysis is uncommon in cytogenetic (cytogenomic) studies, i.e. genome analysis at the chromosomal level. Here, we would like to express our opinion that current cytogenomics benefits from the application of systems biology methodology. Accordingly, systems cytogenomics appears to be a biomedical area requiring more attention than it actually receives.

11.
Cells ; 10(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069648

RESUMO

Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.


Assuntos
Envelhecimento/genética , Encéfalo/patologia , Instabilidade Cromossômica , Degeneração Neural , Doenças Neurodegenerativas/genética , Neurônios/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Predisposição Genética para Doença , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Fenótipo
12.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673024

RESUMO

SHANK3 encodes a scaffold protein involved in postsynaptic receptor density in glutamatergic synapses, including those in the parvalbumin (PV)+ inhibitory neurons-the key players in the generation of sensory gamma oscillations, such as 40-Hz auditory steady-state response (ASSR). However, 40-Hz ASSR was not studied in relation to SHANK3 functioning. Here, we present a 15-year-old girl (SH01) with previously unreported duplication of the first seven exons of the SHANK3 gene (22q13.33). SH01's electroencephalogram (EEG) during 40-Hz click trains of 500 ms duration binaurally presented with inter-trial intervals of 500-800 ms were compared with those from typically developing children (n = 32). SH01 was diagnosed with mild mental retardation and learning disabilities (F70.88), dysgraphia, dyslexia, and smaller vocabulary than typically developing (TD) peers. Her clinical phenotype resembled the phenotype of previously described patients with 22q13.33 microduplications (≈30 reported so far). SH01 had mild autistic symptoms but below the threshold for ASD diagnosis and microcephaly. No seizures or MRI abnormalities were reported. While SH01 had relatively preserved auditory event-related potential (ERP) with slightly attenuated P1, her 40-Hz ASSR was totally absent significantly deviating from TD's ASSR. The absence of 40-Hz ASSR in patients with microduplication, which affected the SHANK3 gene, indicates deficient temporal resolution of the auditory system, which might underlie language problems and represent a neurophysiological biomarker of SHANK3 abnormalities.


Assuntos
Cromossomos Humanos Par 22/genética , Éxons/genética , Duplicação Gênica , Proteínas do Tecido Nervoso/genética , Adolescente , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiologia , Biomarcadores/metabolismo , Eletroencefalografia , Potenciais Evocados Auditivos/genética , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos
13.
Mol Cytogenet ; 14(1): 9, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573679

RESUMO

BACKGROUND: Turner's syndrome is associated with either monosomy or a wide spectrum of structural rearrangements of chromosome X. Despite the interest in studying (somatic) chromosomal mosaicism, Turner's syndrome mosaicism (TSM) remains to be fully described. This is especially true for the analysis of TSM in clinical cohorts (e.g. cohorts of individuals with neurodevelopmental disorders). Here, we present the results of studying TSM in a large cohort of girls with neurodevelopmental disorders and a hypothesis highlighting the diagnostic and prognostic value. RESULTS: Turner's syndrome-associated karyotypes were revealed in 111 (2.8%) of 4021 girls. Regular Turner's syndrome-associated karyotypes were detected in 35 girls (0.9%). TSM was uncovered in 76 girls (1.9%). TSM manifested as mosaic aneuploidy (45,X/46,XX; 45,X/47,XXX/46,XX; 45,X/47,XXX) affected 47 girls (1.2%). Supernumerary marker chromosomes derived from chromosome X have been identified in 11 girls with TSM (0.3%). Isochromosomes iX(q) was found in 12 cases (0.3%); one case was non-mosaic. TSM associated with ring chromosomes was revealed in 5 girls (0.1%). CONCLUSION: The present cohort study provides data on the involvement of TSM in neurodevelopmental disorders among females. Thus, TSM may be an element of pathogenic cascades in brain diseases (i.e. neurodegenerative and psychiatric disorders). Our data allowed us to propose a hypothesis concerning ontogenetic variability of TSM levels. Accordingly, it appears that molecular cytogenetic monitoring of TSM, which is a likely risk factor/biomarker for adult-onset multifactorial diseases, is required.

14.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171981

RESUMO

Mechanisms for somatic chromosomal mosaicism (SCM) and chromosomal instability (CIN) are not completely understood. During molecular karyotyping and bioinformatic analyses of children with neurodevelopmental disorders and congenital malformations (n = 612), we observed colocalization of regular chromosomal imbalances or copy number variations (CNV) with mosaic ones (n = 47 or 7.7%). Analyzing molecular karyotyping data and pathways affected by CNV burdens, we proposed a mechanism for SCM/CIN, which had been designated as "chromohelkosis" (from the Greek words chromosome ulceration/open wound). Briefly, structural chromosomal imbalances are likely to cause local instability ("wreckage") at the breakpoints, which results either in partial/whole chromosome loss (e.g., aneuploidy) or elongation of duplicated regions. Accordingly, a function for classical/alpha satellite DNA (protection from the wreckage towards the centromere) has been hypothesized. Since SCM and CIN are ubiquitously involved in development, homeostasis and disease (e.g., prenatal development, cancer, brain diseases, aging), we have metaphorically (ironically) designate the system explaining chromohelkosis contribution to SCM/CIN as the cytogenomic "theory of everything", similar to the homonymous theory in physics inasmuch as it might explain numerous phenomena in chromosome biology. Recognizing possible empirical and theoretical weaknesses of this "theory", we nevertheless believe that studies of chromohelkosis-like processes are required to understand structural variability and flexibility of the genome.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mosaicismo/embriologia , Envelhecimento/genética , Aneuploidia , Centrômero/genética , Criança , Instabilidade Cromossômica/fisiologia , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Cromossomos/fisiologia , Anormalidades Congênitas/genética , Variações do Número de Cópias de DNA , Diploide , Doença/genética , Feminino , Genoma/genética , Humanos , Cariotipagem/métodos , Masculino , Transtornos do Neurodesenvolvimento/genética , Federação Russa
15.
Mol Cytogenet ; 13: 16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411302

RESUMO

BACKGROUND: Somatic chromosomal mosaicism is the presence of cell populations differing with respect to the chromosome complements (e.g. normal and abnormal) in an individual. Chromosomal mosaicism is associated with a wide spectrum of disease conditions and aging. Studying somatic genome variations has indicated that amounts of chromosomally abnormal cells are likely to be unstable. As a result, dynamic changes of mosaicism rates occur through ontogeny. Additionally, a correlation between disease severity and mosaicism rates appears to exist. High mosaicism rates are usually associated with severe disease phenotypes, whereas low-level mosaicism is generally observed in milder disease phenotypes or in presumably unaffected individuals. Here, we hypothesize that dynamic nature of somatic chromosomal mosaicism may result from genetic-environmental interactions creating therapeutic opportunities in the associated diseases and aging. CONCLUSION: Genetic-environmental interactions seem to contribute to the dynamic nature of somatic mosaicism. Accordingly, an external influence on cellular populations may shift the ratio of karyotypically normal and abnormal cells in favor of an increase in the amount of cells without chromosome rearrangements. Taking into account the role of somatic chromosomal mosaicism in health and disease, we have hypothesized that artificial changing of somatic mosaicism rates may be beneficial in individuals suffering from the associated diseases and/or behavioral or reproductive problems. In addition, such therapeutic procedures might be useful for anti-aging strategies (i.e. possible rejuvenation through a decrease in levels of chromosomal mosaicism) increasing the lifespan. Finally, the hypothesis appears to be applicable to any type of somatic mosacism.

16.
Data Brief ; 27: 104558, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673578

RESUMO

Protein profiles of 13 serum samples from children with autism spectrum disorders (ASD) and 11 serum samples from healthy volunteers was obtained using panoramic ultra-high resolution mass spectrometry. The analysis of measurements was performed using the proteomics search engine. We identified a group of 74 proteins which we term a "protein fingerprint" specific for serum samples collected from children with autism. Components of the protein fingerprint are involved in hemostasis maintenance including biological regulation, the response to stimulus, regulation of metabolism, and proteins of the immune system.

18.
Genes (Basel) ; 10(5)2019 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109140

RESUMO

Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.


Assuntos
Instabilidade Cromossômica/genética , Instabilidade Genômica/genética , Mosaicismo/embriologia , Aneuploidia , Cromossomos/genética , Diploide , Genoma/genética , Genômica , Humanos , Cariótipo , Cariotipagem/métodos , Não Disjunção Genética
19.
Mol Cytogenet ; 12: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766616

RESUMO

BACKGROUND: In medical genetics, diseases are classified according to the nature (hypothetical nature) of the underlying genetic defect. The classification is "gene-centric" and "factor-centric"; a disease may be, thereby, designated as monogenic, oligogenic or polygenic/multifactorial. Chromosomal diseases/syndromes and abnormalities are generally considered apart from these designations due to distinctly different formation mechanisms and simultaneous encompassing from several to several hundreds of co-localized genes. These definitions are ubiquitously used and are perfectly suitable for human genetics issues in historical and academic perspective. However, recent achievements in systems biology have offered a possibility to explore the consequences of a genetic defect from genomic variations to molecular/cellular pathway alterations unique to a disease. Since pathogenetic mechanisms (pathways) are more influential on our understating of disease presentation and progression than genetic defects per se, a need for a disease classification reflecting both genetic causes and molecular/cellular mechanisms appears to exist. Here, we propose an extension to the common disease classification based on the underlying genetic defects, which focuses on disease-specific molecular pathways. CONCLUSION: The basic idea of our classification is to propose pathways as parameters for designating a genetic disease. To proceed, we have followed the tradition of using ancient Greek words and prefixes to create the terms for the pathway-based classification of genetic diseases. We have chosen the word "griphos" (γρῖφος), which simultaneously means "net" and "puzzle", accurately symbolizing the term "pathway" currently used in molecular biology and medicine. Thus, diseases may be classified as monogryphic (single pathway is altered to result in a phenotype), digryphic (two pathways are altered to result in a phenotype), etc.; additionally, diseases may be designated as oligogryphic (several pathways are altered to result in a phenotype), polygryphic (numerous pathways or cascades of pathways are altered to result in a phenotype) and homeogryphic in cases of comorbid diseases resulted from shared pathway alterations. We suppose that classifying illness this way using both "gene-centric" and "pathway-centric" concepts is able to revolutionize current views on genetic diseases.

20.
Mol Psychiatry ; 24(8): 1099-1111, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30664668

RESUMO

We provide an overview of the recent achievements in psychiatric genetics research in the Russian Federation and present genotype-phenotype, population, epigenetic, cytogenetic, functional, ENIGMA, and pharmacogenetic studies, with an emphasis on genome-wide association studies. The genetic backgrounds of mental illnesses in the polyethnic and multicultural population of the Russian Federation are still understudied. Furthermore, genetic, genomic, and pharmacogenetic data from the Russian Federation are not adequately represented in the international scientific literature, are currently not available for meta-analyses and have never been compared with data from other populations. Most of these problems cannot be solved by individual centers working in isolation but warrant a truly collaborative effort that brings together all the major psychiatric genetic research centers in the Russian Federation in a national consortium. For this reason, we have established the Russian National Consortium for Psychiatric Genetics (RNCPG) with the aim to strengthen the power and rigor of psychiatric genetics research in the Russian Federation and enhance the international compatibility of this research.The consortium is set up as an open organization that will facilitate collaborations on complex biomedical research projects in human mental health in the Russian Federation and abroad. These projects will include genotyping, sequencing, transcriptome and epigenome analysis, metabolomics, and a wide array of other state-of-the-art analyses. Here, we discuss the challenges we face and the approaches we will take to unlock the huge potential that the Russian Federation holds for the worldwide psychiatric genetics community.


Assuntos
Colaboração Intersetorial , Transtornos Mentais/epidemiologia , Transtornos Mentais/genética , Pesquisa Biomédica , Estudo de Associação Genômica Ampla , Humanos , Saúde Mental/etnologia , Federação Russa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...