Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Vaccine ; 41(25): 3688-3700, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012114

RESUMO

BACKGROUND: Assessment of COVID-19 vaccines safety during pregnancy is urgently needed. METHODS: We conducted a systematic review and meta-analysis to evaluate the safety of COVID-19 vaccines, including their components and technological platforms used in other vaccines during pregnancy and animal studies to complement direct evidence. We searched literature databases from its inception to September 2021 without language restriction, COVID-19 vaccine websites, and reference lists of other systematic reviews and the included studies. Pairs of reviewers independently selected, data extracted, and assessed the risk of bias of the studies. Discrepancies were resolved by consensus. (PROSPERO CRD42021234185). RESULTS: We retrieved 8,837 records from the literature search; 71 studies were included, involving 17,719,495 pregnant persons and 389 pregnant animals. Most studies (94%) were conducted in high-income countries, were cohort studies (51%), and 15% were classified as high risk of bias. We identified nine COVID-19 vaccine studies, seven involving 309,164 pregnant persons, mostly exposed to mRNA vaccines. Among non-COVID-19 vaccines, the most frequent exposures were AS03 and aluminum-based adjuvants. A meta-analysis of studies that adjusted for potential confounders showed no association with adverse outcomes, regardless of the vaccine or the trimester of vaccination. Neither the reported rates of adverse pregnancy outcomes nor reactogenicity exceeded expected background rates, which was the case for ASO3- or aluminum-adjuvanted non-COVID-19 vaccines in the proportion meta-analyses of uncontrolled studies/arms. The only exception was postpartum hemorrhage after COVID-19 vaccination (10.40%; 95% CI: 6.49-15.10%), reported by two studies; however, the comparison with non-exposed pregnant persons, available for one study, found non-statistically significant differences (adjusted OR 1.09; 95% CI 0.56-2.12). Animal studies showed consistent results with studies in pregnant persons. CONCLUSION: We found no safety concerns for currently administered COVID-19 vaccines during pregnancy. Additional experimental and real-world evidence could enhance vaccination coverage. Robust safety data for non-mRNA-based COVID-19 vaccines are still needed.


Assuntos
COVID-19 , Vacinas , Gravidez , Feminino , Humanos , Vacinas contra COVID-19/efeitos adversos , Alumínio , COVID-19/prevenção & controle , Vacinas/efeitos adversos , Vacinação/efeitos adversos , Adjuvantes Imunológicos
2.
Medicine (Baltimore) ; 102(9): e32954, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862871

RESUMO

INTRODUCTION: Numerous vaccines have been evaluated and approved for coronavirus disease 2019 (COVID-19). Since pregnant persons have been excluded from most clinical trials of COVID-19 vaccines, sufficient data regarding the safety of these vaccines for the pregnant person and their fetus have rarely been available at the time of product licensure. However, as COVID-19 vaccines have been deployed, data on the safety, reactogenicity, immunogenicity, and efficacy of COVID-19 vaccines for pregnant persons and neonates are becoming increasingly available. A living systematic review and meta-analysis of the safety and effectiveness of COVID-19 vaccines for pregnant persons and newborns could provide the information necessary to help guide vaccine policy decisions. METHODS AND ANALYSIS: We aim to conduct a living systematic review and meta-analysis based on biweekly searches of medical databases (e.g., MEDLINE, EMBASE, CENTRAL) and clinical trial registries to systematically identify relevant studies of COVID-19 vaccines for pregnant persons. Pairs of reviewers will independently select, extract data, and conduct risk of bias assessments. We will include randomized clinical trials, quasi-experimental studies, cohort, case-control, cross-sectional studies, and case reports. Primary outcomes will be the safety, efficacy, and effectiveness of COVID-19 vaccines in pregnant persons, including neonatal outcomes. Secondary outcomes will be immunogenicity and reactogenicity. We will conduct paired meta-analyses, including prespecified subgroup and sensitivity analyses. We will use the grading of recommendations assessment, development, and evaluation approach to evaluate the certainty of evidence.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Recém-Nascido , Feminino , Gravidez , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Estudos Transversais , Bases de Dados Factuais , Feto , Metanálise como Assunto
3.
Front Med (Lausanne) ; 9: 893292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712117

RESUMO

Disease X represents a yet unknown human pathogen which has potential to cause a serious international epidemic or pandemic. The COVID-19 pandemic has illustrated that despite being at increased risk of severe disease compared with the general population, pregnant women were left behind in the development and implementation of vaccination, resulting in conflicting communications and changing guidance about vaccine receipt in pregnancy. Based on the COVID-19 experience, the COVAX Maternal Immunization Working Group have identified three key factors and five broad focus topics for consideration when proactively planning for a disease X pandemic, including 10 criteria for evaluating pandemic vaccines for potential use in pregnant women. Prior to any disease X pandemic, collaboration and coordination are needed to close the pregnancy data gap which is currently a barrier to gender equity in health innovation, which will aid in allowing timely access to life-saving interventions including vaccines for pregnant women and their infants.

4.
Vaccine ; 40(12): 1681-1690, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164990

RESUMO

Currently, no formal mechanisms or systematic approaches exist to inform developers of new vaccines of the evidence anticipated to facilitate global policy recommendations, before a vaccine candidate approaches regulatory approval at the end of pre-licensure efficacy studies. Consequently, significant delays may result in vaccine introduction and uptake, while post-licensure data are generated to support a definitive policy decision. To address the uncertainties of the evidence-to-recommendation data needs and to mitigate the risk of delays between vaccine recommendation and use, WHO is evaluating the need for and value of a new strategic alignment tool: Evidence Considerations for Vaccine Policy (ECVP). EVCPs aim to fill a critical current gap by providing early (pre-phase 3 study design) information on the anticipated clinical trial and observational data or evidence that could support WHO and/or policy decision making for new vaccines in priority disease areas. The intent of ECVPs is to inform vaccine developers, funders, and other key stakeholders, facilitating stakeholder alignment in their strategic planning for late stage vaccine development. While ECVPs are envisaged as a tool to support dialogue on evidence needs between regulators and policy makers at the national, regional and global level, development of an ECVP will not preclude or supersede the independent WHO's Strategic Advisory Group of Experts on Immunization (SAGE) evidence to recommendation (EtR) process that is required for all vaccines seeking WHO policy recommendation. Tuberculosis (TB) vaccine candidates intended for use in the adolescent and adult target populations comprise a portfolio of priority vaccines in late-stage clinical development. As such, TB vaccines intended for use in this target population provide a 'test case' to further develop the ECVP concept, and develop the first WHO ECVP considerations guidance.


Assuntos
Vacinas contra a Tuberculose , Adolescente , Humanos , Programas de Imunização , Políticas , Vacinação , Organização Mundial da Saúde
5.
Vaccine ; 39(51): 7357-7362, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34799142

RESUMO

Infectious diseases may cause serious morbidity and mortality in pregnant women, their foetuses, and infants; the risk associated with any newly emerging infectious disease (EID) is likely unknown at the time of its emergence. While the ongoing SARS-CoV-2 pandemic shows that the development of vaccines against new pathogens can be considerably accelerated, the immunization of pregnant women generally lags behind the general population. Guided by the priority pathogen list for WHO's R&D Blueprint for Action to Prevent Epidemics, this workshop sought to define the evidence needed for use of vaccines against EIDs in pregnant and lactating women, using Lassa fever as a model. Close to 60 maternal immunization (MI) and vaccine safety experts, regulators, vaccine developers, Lassa fever experts, and investigators from Lassa-affected countries examined the critical steps for vaccine development and immunization decisions for pregnant and lactating women. This paper reports on key themes and recommendations from the workshop. Current practice still assumes the exclusion of pregnant women from early vaccine trials. A shift in paradigm is needed to progress towards initial inclusion of pregnant women in Phase 2 and 3 trials. Several practical avenues were delineated. Participants agreed that vaccine platforms should be assessed early for their suitability for maternal immunization. It was noted that, in some cases, nonclinical data derived from assessing a given platform using other antigens may be adequate evidence to proceed to a first clinical evaluation and that concurrence from regulators may be sought with supporting rationale. For clinical trials, essential prerequisites such as documenting the disease burden in pregnant women, study site infrastructure, capabilities, and staff experience were noted. Early and sustained communication with the local community was considered paramount in any program for the conduct of MI trials and planned vaccine introduction.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Vacinas , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Feminino , Humanos , Lactação , Londres , Gravidez , Encaminhamento e Consulta , SARS-CoV-2 , Desenvolvimento de Vacinas
6.
Vaccine ; 39(40): 5891-5908, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34489131

RESUMO

BACKGROUND: Rapid assessment of COVID-19 vaccine safety during pregnancy is urgently needed. METHODS: We conducted a rapid systematic review, to evaluate the safety of COVID-19 vaccines selected by the COVID-19 Vaccines Global Access-Maternal Immunization Working Group in August 2020, including their components and their technological platforms used in other vaccines for pregnant persons. We searched literature databases, COVID-19 vaccine pregnancy registries, and explored reference lists from the inception date to February 2021 without language restriction. Pairs of reviewers independently selected studies through COVIDENCE, and performed the data extraction and the risk of bias assessment. Discrepancies were resolved by consensus. Registered on PROSPERO (CRD42021234185). RESULTS: We retrieved 6757 records and 12 COVID-19 pregnancy registries from the search strategy; 38 clinical and non-clinical studies (involving 2,398,855 pregnant persons and 56 pregnant animals) were included. Most studies (89%) were conducted in high-income countries and were cohort studies (57%). Most studies (76%) compared vaccine exposures with no exposure during the three trimesters of pregnancy. The most frequent exposure was to AS03 adjuvant, in the context of A/H1N1 pandemic influenza vaccines, (n = 24) and aluminum-based adjuvants (n = 11). Only one study reported exposure to messenger RNA in lipid nanoparticles COVID-19 vaccines. Except for one preliminary report about A/H1N1 influenza vaccination (adjuvant AS03), corrected by the authors in a more thorough analysis, all studies concluded that there were no safety concerns. CONCLUSION: This rapid review found no evidence of pregnancy-associated safety concerns of COVID-19 vaccines or of their components or platforms when used in other vaccines. However, the need for further data on several vaccine platforms and components is warranted, given their novelty. Our findings support current WHO guidelines recommending that pregnant persons may consider receiving COVID-19 vaccines, particularly if they are at high risk of exposure or have comorbidities that enhance the risk of severe disease.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Vacinas contra COVID-19 , Feminino , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Gravidez , SARS-CoV-2 , Vacinação
7.
medRxiv ; 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34127978

RESUMO

BACKGROUND: Pregnant women with COVID-19 are at an increased risk of severe COVID-19 illness as well as adverse pregnancy and birth outcomes. Many countries are vaccinating or considering vaccinating pregnant women with limited available data about the safety of this strategy. Early identification of safety concerns of COVID-19 vaccines, including their components, or their technological platforms is therefore urgently needed. METHODS: We conducted a rapid systematic review, as the first phase of an ongoing full systematic review, to evaluate the safety of COVID-19 vaccines in pregnant women, including their components, and their technological platforms (whole virus, protein, viral vector or nucleic acid) used in other vaccines, following the Cochrane methods and the PRISMA statement for reporting (PROSPERO-CRD42021234185).We searched literature databases, COVID-19 and pregnancy registries from inception February 2021 without time or language restriction and explored the reference lists of relevant systematic reviews retrieved. We selected studies of any methodological design that included at least 50 pregnant women or pregnant animals exposed to the vaccines that were selected for review by the COVAX MIWG in August 2020 or their components or platforms included in the COVID-19 vaccines, and evaluated adverse events during pregnancy and the neonatal period.Pairs of reviewers independently selected studies through the COVIDENCE web software and performed the data extraction through a previously piloted online extraction form. Discrepancies were resolved by consensus. RESULTS: We identified 6768 records, 256 potentially eligible studies were assessed by full-text, and 37 clinical and non-clinical studies (38 reports, involving 2,397,715 pregnant women and 56 pregnant animals) and 12 pregnancy registries were included.Most studies (89%) were conducted in high-income countries. The most frequent study design was cohort studies (n=21), followed by surveillance studies, randomized controlled trials, and registry analyses. Most studies (76%) allowed comparisons between vaccinated and unvaccinated pregnant women (n=25) or animals (n=3) and reported exposures during the three trimesters of pregnancy.The most frequent exposure was to AS03 adjuvant in the context of A/H1N1 pandemic influenza vaccines (n=24), followed by aluminum-based adjuvants (n=11). Aluminum phosphate was used in Respiratory Syncytial Virus Fusion candidate vaccines (n=3) and Tdap vaccines (n=3). Different aluminum-based adjuvants were used in hepatitis vaccines. The replication-deficient simian adenovirus ChAdOx1 was used for a Rift Valley fever vaccine. Only one study reported exposure to messenger RNA (mRNA) COVID-19 vaccines that also used lipid nanoparticles. Except for one preliminary report about A/H1N1 influenza vaccination (adjuvant AS03) - corrected by the authors in a more thorough analysis, all studies concluded that there were no safety concerns. CONCLUSION: This rapid review found no evidence of pregnancy-associated safety concerns of COVID-19 vaccines that were selected for review by the COVAX MIWG or of their components or platforms when used in other vaccines. However, the need for further data on several vaccine platforms and components is warranted given their novelty. Our findings support current WHO guidelines recommending that pregnant women may consider receiving COVID-19 vaccines, particularly if they are at high risk of exposure or have comorbidities that enhance the risk of severe disease.

8.
Tuberculosis (Edinb) ; 126: 102040, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310626

RESUMO

Two proof of concept clinical trials with TB vaccines demonstrate that new approaches can prevent sustained TB infection in adolescents (BCG revaccination) and TB disease in adults (M72/ASO1E) (Nemes et al., 2018; Tait et al., 2019) [1,2]. Both approaches are in late stage development and provide motivation and rationale to invest into a global TB vaccine pipeline. This pipeline needs to be diverse to address TB-specific challenges including variation in target populations, uncertainties in animal model predictivity and lack of immune correlates of protection. It requires that individual vaccine candidates must be advanced rationally and that the global pipeline must be managed in the most nimble and resource-efficient way, especially in the current constrained funding environment. The TB Vaccine Development Pathway is a webtool which has been developed as an offer to the field to provide a source of information and guidance covering vaccine development from discovery to implementation. It is underpinned by generic and TB vaccine-specific guidelines, regulatory frameworks and best practice, and was compiled by a multi-disciplinary team of scientific and technical experts with the input of the TB vaccine community. The Pathway is a unique tool to guide and accelerate the development of TB vaccine candidates and may be useful for other vaccine development fields.


Assuntos
Desenvolvimento de Medicamentos/tendências , Imunização Secundária/métodos , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Humanos , Estudos Retrospectivos
10.
F1000Res ; 7: 199, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568497

RESUMO

The Bacille Calmette Guerin (BCG) vaccine can provide decades of protection against tuberculosis (TB) disease, and although imperfect, BCG is proof that vaccine mediated protection against TB is a possibility. A new TB vaccine is, therefore, an inevitability; the question is how long will it take us to get there? We have made substantial progress in the development of vaccine platforms, in the identification of antigens and of immune correlates of risk of TB disease. We have also standardized animal models to enable head-to-head comparison and selection of candidate TB vaccines for further development.  To extend our understanding of the safety and immunogenicity of TB vaccines we have performed experimental medicine studies to explore route of administration and have begun to develop controlled human infection models. Driven by a desire to reduce the length and cost of human efficacy trials we have applied novel approaches to later stage clinical development, exploring alternative clinical endpoints to prevention of disease outcomes. Here, global leaders in TB vaccine development discuss the progress made and the challenges that remain. What emerges is that, despite scientific progress, few vaccine candidates have entered clinical trials in the last 5 years and few vaccines in clinical trials have progressed to efficacy trials. Crucially, we have undervalued the knowledge gained from our "failed" trials and fostered a culture of risk aversion that has limited new funding for clinical TB vaccine development. The unintended consequence of this abundance of caution is lack of diversity of new TB vaccine candidates and stagnation of the clinical pipeline. We have a variety of new vaccine platform technologies, mycobacterial antigens and animal and human models.  However, we will not encourage progression of vaccine candidates into clinical trials unless we evaluate and embrace risk in pursuit of vaccine development.

11.
Science ; 349(6245): 320-4, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26138104

RESUMO

Preclinical studies of viral vector-based HIV-1 vaccine candidates have previously shown partial protection against neutralization-resistant virus challenges in rhesus monkeys. In this study, we evaluated the protective efficacy of adenovirus serotype 26 (Ad26) vector priming followed by purified envelope (Env) glycoprotein boosting. Rhesus monkeys primed with Ad26 vectors expressing SIVsmE543 Env, Gag, and Pol and boosted with AS01B-adjuvanted SIVmac32H Env gp140 demonstrated complete protection in 50% of vaccinated animals against a series of repeated, heterologous, intrarectal SIVmac251 challenges that infected all controls. Protective efficacy correlated with the functionality of Env-specific antibody responses. Comparable protection was also observed with a similar Ad/Env vaccine against repeated, heterologous, intrarectal SHIV-SF162P3 challenges. These data demonstrate robust protection by Ad/Env vaccines against acquisition of neutralization-resistant virus challenges in rhesus monkeys.


Assuntos
Vacinas contra a AIDS/imunologia , Vacinas contra Adenovirus/imunologia , Produtos do Gene env/imunologia , HIV-1/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Produtos do Gene gag/imunologia , Produtos do Gene pol/imunologia , Vetores Genéticos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Imunização Secundária , Macaca mulatta , Masculino , Vírus da Imunodeficiência Símia/imunologia
12.
PLoS One ; 10(7): e0131571, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26148007

RESUMO

METHODS: In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. RESULTS: ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). CONCLUSIONS: An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. TRIAL REGISTRATION: ClinicalTrials.gov NCT01366534.


Assuntos
Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/prevenção & controle , Esporozoítos/imunologia , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Método Duplo-Cego , Humanos , Imunização Secundária/métodos , Imunoglobulina G/imunologia , Testes Imunológicos/métodos , Interferon gama/imunologia , Vacinação/métodos
13.
PLoS One ; 10(5): e0125954, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961283

RESUMO

BACKGROUND: Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. METHODS: In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. RESULTS: The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. CONCLUSION: Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. TRIAL REGISTRATION: ClinicalTrials.gov NCT01264445.


Assuntos
Vacinas contra a AIDS/imunologia , População Negra , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Voluntários Saudáveis , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/efeitos adversos , Adenoviridae/genética , Adenoviridae/imunologia , Adjuvantes Imunológicos , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Imunidade Celular , Imunidade Humoral , Interferon gama/biossíntese , Interferon gama/sangue , Masculino , Proteínas Recombinantes de Fusão/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação , Adulto Jovem
14.
PLoS One ; 10(4): e0122835, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25856308

RESUMO

HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.


Assuntos
Vetores Genéticos/genética , HIV-1/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , Adenoviridae , Animais , Anticorpos Antivirais/sangue , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Genes pol/genética , Antígenos HIV/genética , Proteína do Núcleo p24 do HIV/genética , Injeções Intramusculares , Macaca , Camundongos , Pan troglodytes , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Vacinas Virais/administração & dosagem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
15.
Vaccine ; 32(49): 6683-91, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24950358

RESUMO

In an attempt to improve the efficacy of the candidate malaria vaccine RTS,S/AS02, two studies were conducted in 1999 in healthy volunteers of RTS,S/AS02 in combination with recombinant Plasmodium falciparum thrombospondin-related anonymous protein (TRAP). In a Phase 1 safety and immunogenicity study, volunteers were randomized to receive TRAP/AS02 (N=10), RTS,S/AS02 (N=10), or RTS,S+TRAP/AS02 (N=20) at 0, 1 and 6-months. In a Phase 2 challenge study, subjects were randomized to receive either RTS,S+TRAP/AS02 (N=25) or TRAP/AS02 (N=10) at 0 and 1-month, or to a challenge control group (N=8). In both studies, the combination vaccine had an acceptable safety profile and was acceptably tolerated. Antigen-specific antibodies, lymphoproliferative responses, and IFN-γ production by ELISPOT assay elicited with the combination vaccine were qualitatively similar to those generated by the single component vaccines. However, post-dose 2 anti-CS antibodies in the RTS,S+TRAP/AS02 vaccine recipients were lower than in the RTS,S/AS02 vaccine recipients. After challenge, 10 of 11 RTS,S+TRAP/AS02 vaccinees, 5 of 5 TRAP/AS02 vaccinees, and 8 of 8 infectivity controls developed parasitemia, with median pre-patent periods of 13.0, 11.0, and 12.0 days, respectively. The absence of any prevention or delay of parasitemia by TRAP/AS02 suggests no apparent added value of TRAP/AS02 as a candidate vaccine. The absence of significant protection or delay of parasitemia in the 11 RTS,S+TRAP/AS02 vaccine recipients contrasts with previous 2 dose studies of RTS,S/AS02. The small sample size did not permit identifying statistically significant differences between the study arms. However, we speculate, within the constraints of the challenge study, that the presence of the TRAP antigen may have interfered with the vaccine efficacy previously observed with this regimen of RTS,S/AS02, and that any future TRAP-based vaccines should consider employing alternative vaccine platforms.


Assuntos
Lipídeo A/análogos & derivados , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Saponinas/efeitos adversos , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Proliferação de Células , Combinação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , ELISPOT , Feminino , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Lipídeo A/administração & dosagem , Lipídeo A/efeitos adversos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Parasitemia/prevenção & controle , Proteínas de Protozoários/imunologia , Saponinas/administração & dosagem , Resultado do Tratamento , Vacinação/efeitos adversos , Vacinação/métodos , Adulto Jovem
16.
Vaccine ; 32(22): 2657-65, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24144472

RESUMO

The human immunodeficiency virus type-1 (HIV-1) vaccine candidate F4/AS01 has previously been shown to induce potent and persistent polyfunctional CD4(+) T-cell responses in HIV-1-seronegative volunteers. This placebo-controlled study evaluated two doses of F4/AS01 1-month apart in antiretroviral treatment (ART)-experienced and ART-naïve HIV-1-infected subjects (1:1 randomisation in each cohort). Safety, HIV-1-specific CD4(+) and CD8(+) T-cell responses, absolute CD4(+) T-cell counts and HIV-1 viral load were monitored for 12 months post-vaccination. Reactogenicity was clinically acceptable and no vaccine-related serious adverse events were reported. The frequency of HIV-1-specific CD4(+) T-cells 2 weeks post-dose 2 was significantly higher in the vaccine group than in the placebo group in both cohorts (p<0.05). Vaccine-induced HIV-1-specific CD4(+) T-cells exhibited a polyfunctional phenotype, expressing at least CD40L and IL-2. No increase in HIV-1-specific CD8(+) T-cells or change in CD8(+) T-cell activation marker expression profile was detected. Absolute CD4(+) T-cell counts were variable over time in both cohorts. Viral load remained suppressed in ART-experienced subjects. In ART-naïve subjects, a transient reduction in viral load from baseline was observed 2 weeks after the second F4/AS01 dose, which was concurrent with a higher frequency of HIV-1-specific CD4(+) T-cells expressing at least IL-2 in this cohort. In conclusion, F4/AS01 showed a clinically acceptable reactogenicity and safety profile, and induced polyfunctional HIV-1-specific CD4(+) T-cell responses in ART-experienced and ART-naïve subjects. These findings support further clinical investigation of F4/AS01 as a potential HIV-1 vaccine for therapeutic use in individuals with HIV-1 infection.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/terapia , Vacinas contra a AIDS/efeitos adversos , Adjuvantes Imunológicos/administração & dosagem , Adulto , Antirretrovirais/uso terapêutico , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/imunologia , Feminino , Infecções por HIV/tratamento farmacológico , HIV-1 , Humanos , Imunidade Celular , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Carga Viral , Adulto Jovem
17.
Vaccine ; 31(51): 6079-86, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24161574

RESUMO

The HIV epidemic is greatest in Sub-Saharan Africa and India where HIV-1 subtype C is predominant. To control the spread of HIV in these parts of the world a preventive HIV-1 subtype C vaccine is urgently required. Here we report the immunogenicity of a candidate HIV-1 subtype C vaccine delivered by a recombinant measles vector carrying an insert encoding HIV-1 subtype C Gag, RT and Nef (MV1-F4), in MHC-typed non-human primates. HIV-1 specific cytokine secreting CD4+ and CD8+ T cell responses were detected in 15 out of 16 vaccinees. These HIV-specific T cell responses persisted in lymphoid tissues. Anti-HIV-1 antibody responses were detected in 15 out of 16 vaccinees and titres were boosted by a second immunisation carried out 84 days later. These findings support further exploration of the MV1-F4 vector as a candidate HIV-1 subtype C vaccine or as part of a wider vaccine strategy.


Assuntos
Vacinas contra a AIDS/imunologia , Portadores de Fármacos , Vírus do Sarampo/genética , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Vetores Genéticos , Anticorpos Anti-HIV/sangue , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Macaca fascicularis , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
18.
PLoS One ; 7(11): e50397, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226275

RESUMO

Live attenuated measles virus is one of the most efficient and safest vaccines available, making it an attractive candidate vector for a HIV/AIDS vaccine aimed at eliciting cell-mediated immune responses (CMI). Here we have characterized the potency of CMI responses generated in mice and non-human primates after intramuscular immunisation with a candidate recombinant measles vaccine carrying an HIV-1 insert encoding Clade B Gag, RT and Nef (MV1-F4). Eight Mauritian derived, MHC-typed cynomolgus macaques were immunised with 10(5) TCID(50) of MV1-F4, four of which were boosted 28 days later with the same vaccine. F4 and measles virus (MV)-specific cytokine producing T cell responses were detected in 6 and 7 out of 8 vaccinees, respectively. Vaccinees with either M6 or recombinant MHC haplotypes demonstrated the strongest cytokine responses to F4 peptides. Polyfunctional analysis revealed a pattern of TNFα and IL-2 responses by CD4+ T cells and TNFα and IFNγ responses by CD8+ T cells to F4 peptides. HIV-specific CD4+ and CD8+ T cells expressing cytokines waned in peripheral blood lymphocytes by day 84, but CD8+ T cell responses to F4 peptides could still be detected in lymphoid tissues more than 3 months after vaccination. Anti-F4 and anti-MV antibody responses were detected in 6 and 8 out of 8 vaccinees, respectively. Titres of anti-F4 and MV antibodies were boosted in vaccinees that received a second immunisation. MV1-F4 carrying HIV-1 Clade B inserts induces robust boostable immunity in non-human primates. These results support further exploration of the MV1-F4 vector modality in vaccination strategies that may limit HIV-1 infectivity.


Assuntos
Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Anticorpos Antivirais/biossíntese , HIV-1/imunologia , Imunização Secundária , Vacina contra Sarampo/genética , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/virologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Humanos , Imunidade Celular , Memória Imunológica , Injeções Intramusculares , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Macaca fascicularis , Masculino , Vacina contra Sarampo/administração & dosagem , Vacina contra Sarampo/imunologia , Camundongos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia , Vacinas Sintéticas , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
19.
Naunyn Schmiedebergs Arch Pharmacol ; 385(12): 1211-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22983013

RESUMO

As a new human immunodeficiency virus type 1 (HIV-1) vaccine approach, the live-attenuated measles virus (MV) Schwarz vaccine strain was genetically engineered to express the F4 antigen (MV1-F4). F4 is a fusion protein comprising HIV-1 antigens p17 and p24, reverse transcriptase and Nef. This study assessed the toxicity, biodistribution and shedding profiles of MV1-F4. Cynomolgus macaques were intramuscularly immunized one or three times with the highest dose of MV1-F4 intended for clinical use, the reference (Schwarz) measles vaccine or saline, and monitored clinically for 11 or 85 days. Toxicological parameters included local and systemic clinical signs, organ weights, haematology, clinical and gross pathology and histopathology. Both vaccines were well tolerated, with no morbidity, clinical signs or gross pathological findings observed. Mean spleen weights were increased after three doses of either vaccine, which corresponded with increased numbers and/or sizes of germinal centers. This was likely a result of the immune response to the vaccines. Either vaccine virus replicated preferentially in secondary lymphoid organs and to a lesser extent in epithelium-rich tissues (e.g., intestine, urinary bladder and trachea) and the liver. At the expected peak of viremia, viral RNA was detected in some biological fluid samples from few animals immunized with either vaccine, but none of these samples contained infectious virus. In conclusion, no shedding of infectious viral particles was identified in cynomolgus monkeys after injection of MV1-F4 or Schwarz measles vaccines. Furthermore, no toxic effect in relation to the MV vaccination was found with these vaccines in this study.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos HIV/imunologia , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Vacinas contra a AIDS/farmacocinética , Vacinas contra a AIDS/toxicidade , Animais , Feminino , Engenharia Genética/métodos , HIV-1/imunologia , Injeções Intramusculares , Macaca fascicularis , Masculino , Vacina contra Sarampo/farmacocinética , Vacina contra Sarampo/toxicidade , Tamanho do Órgão/imunologia , RNA Viral/metabolismo , Fatores de Tempo , Distribuição Tecidual , Replicação Viral , Eliminação de Partículas Virais
20.
Retrovirology ; 9: 56, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22799593

RESUMO

BACKGROUND: Current data suggest that an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine should elicit both adaptive humoral and cell mediated immune responses. Such a vaccine will also need to protect against infection from a range of heterologous viral variants. Here we have developed a simian-human immunodeficiency virus (SHIV) based model in cynomolgus macaques to investigate the breadth of protection conferred by HIV-1W61D recombinant gp120 vaccination against SHIVsbg and SHIVSF33 challenge, and to identify correlates of protection. RESULTS: High titres of anti-envelope antibodies were detected in all vaccinees. The antibodies reacted with both the homologous HIV-1W61D and heterologous HIV-1IIIB envelope rgp120 which has an identical sequence to the SHIVsbg challenge virus. Significant titres of virus neutralising antibodies were detected against SHIVW61D expressing an envelope homologous with the vaccine, but only limited cross neutralisation against SHIVsbg, SHIV-4 and SHIVSF33 was observed. Protection against SHIVsbg infection was observed in vaccinated animals but none was observed against SHIVSF33 challenge. Transfer of immune sera from vaccinated macaques to naive recipients did not confer protection against SHIVsbg challenge. In a follow-up study, T cell proliferative responses detected after immunisation with the same vaccine against a single peptide present in the second conserved region 2 of HIV-1 W61D and HIV-1 IIIB gp120, but not SF33 gp120. CONCLUSIONS: Following extended vaccination with a HIV-1 rgp120 vaccine, protection was observed against heterologous virus challenge with SHIVsbg, but not SHIVSF33. Protection did not correlate with serological responses generated by vaccination, but might be associated with T cell proliferative responses against an epitope in the second constant region of HIV-1 gp120. Broader protection may be obtained with recombinant HIV-1 envelope based vaccines formulated with adjuvants that generate proliferative T cell responses in addition to broadly neutralising antibodies.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Proliferação de Células , Modelos Animais de Doenças , Seguimentos , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/administração & dosagem , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Soros Imunes/administração & dosagem , Soros Imunes/imunologia , Imunização , Macaca fascicularis , Testes de Neutralização , RNA Viral/análise , RNA Viral/genética , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Fatores de Tempo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...