Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brief Funct Genomics ; 22(6): 525-532, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37981860

RESUMO

Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.


Assuntos
Cefalópodes , Animais , Cefalópodes/genética , Proteoma/genética , Edição de RNA , RNA , Encéfalo
2.
Sci Rep ; 13(1): 16602, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789115

RESUMO

Prostate cancer is the predominant cause of cancer in men, but there is still a lack of biomarkers and treatments for metastatic spread. The initial promise of microRNAs to provide avenues to solve these problems has been dampened by the realisation that microRNAs co-exist in multiple functionally distinct isoforms, for example due to A-to-I editing. We recently found that A-to-I-editing of microRNA-379 (miR-379) was associated with prostate cancer, and that only the unedited isoform was negatively correlated with aggressive disease. Here, we set out to decipher the biological effects of unedited and edited miR-379 in prostate cancer cells. After transfection of four different prostate cancer cell lines with isoform-specific miR-379 mimics, we performed assays for cell growth, colony formation, migration, cell-cell adhesion, and analysed epithelial-mesenchymal transition (EMT) and stemness markers. We found that unedited miR-379 affected cell growth, with a promoting function in androgen receptor (AR)-negative cells and an inhibiting effect in AR-positive cells. This is supported by our in silico analysis that found unedited miR-379 targets are predicted to be predominantly involved in cellular proliferation whereas the targets of edited miR-379 are not. We further found that both miR-379 isoforms could promote colony formation, migration, and cell-cell adhesion. Overall, our data suggests that editing of miR-379 attenuates the growth-suppressive function of unedited miR-379 in androgen-sensitive prostate cancer cells, thereby promoting tumor growth.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Próstata/patologia , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Isoformas de Proteínas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
3.
Front Oncol ; 13: 1252915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781173

RESUMO

Introduction: Prostate cancer (PCa) is the most common type of cancer in males, and the metastatic form is a leading cause of death worldwide. There are currently no curative treatments for this subset of patients. To decrease the mortality of this disease, greater focus must be placed on developing therapeutics to reduce metastatic spread. We focus on dissemination to the bone since this is both the most common site of metastatic spread and associated with extreme pain and discomfort for patients. Our strategy is to exploit microRNAs (miRNAs) to disrupt the spread of primary PCa to the bone. Methods: PCa cell lines were transduced to overexpress microRNA-379 (miR-379). These transduced PCa cells were assessed using cell growth, migration, colony formation and adhesion assays. We also performed in vivo intracardiac injections to look at metastatic spread in NSG mice. A cytokine array was also performed to identify targets of miR-379 that may drive metastatic spread. Results: PCa cells with increased levels of miR-379 showed a significant decrease in proliferation, migration, colony formation, and adhesion to bone cells in vitro. In vivo miR-379 overexpression in PC3 cells significantly decreased metastatic spread to bone and reduced levels of miR-379 were seen in patients with metastases. We identified GDF-15 to be secreted from osteoblasts when grown in conditioned media from PCa cells with reduced miR-379 levels. Discussion: Taken together, our in vitro and in vivo functional assays support a role for miR-379 as a tumour suppressor. A potential mechanism is unravelled whereby miR-379 deregulation in PCa cells affects the secretion of GDF-15 from osteoblasts which in turn facilitates the metastatic establishment in bone. Our findings support the potential role of miR-379 as a therapeutic solution for prostate cancer.

4.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568709

RESUMO

Distant metastasis is the major cause of cancer-related deaths in men with prostate cancer (PCa). An in vivo functional screen was used to identify microRNAs (miRNAs) regulating metastatic dissemination of PCa cells. PC3 cells transduced with pooled miRZiP™ lentivirus library (anti-miRNAs) were injected intraprostatic to 13 NSG mice followed by targeted barcode/anti-miR sequencing. PCa cells in the primary tumours showed a homogenous pattern of anti-miRNAs, but different anti-miRNAs were enriched in liver, lung, and bone marrow, with anti-miR-379 highly enriched in the latter. The bone metastasis-promoting phenotype induced by decreased miR-379 levels was also confirmed in a less metastatic PCa cell line, 22Rv1, where all mice injected intracardially with anti-miR-379-22Rv1 cells developed bone metastases. The levels of miR-379 were found to be lower in bone metastases compared to primary tumours and non-cancerous prostatic tissue in a patient cohort. In vitro functional studies suggested that the mechanism of action was that reduced levels of miR-379 gave an increased colony formation capacity in conditions mimicking the bone microenvironment. In conclusion, our data suggest that specific miRNAs affect the establishment of primary tumours and metastatic dissemination, with a loss of miR-379 promoting metastases in bone.

5.
Front Genome Ed ; 5: 1181713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342458

RESUMO

The coleoid cephalopods display unusually extensive mRNA recoding by adenosine deamination, yet the underlying mechanisms are not well understood. Because the adenosine deaminases that act on RNA (ADAR) enzymes catalyze this form of RNA editing, the structure and function of the cephalopod orthologs may provide clues. Recent genome sequencing projects have provided blueprints for the full complement of coleoid cephalopod ADARs. Previous results from our laboratory have shown that squid express an ADAR2 homolog, with two splice variants named sqADAR2a and sqADAR2b and that these messages are extensively edited. Based on octopus and squid genomes, transcriptomes, and cDNA cloning, we discovered that two additional ADAR homologs are expressed in coleoids. The first is orthologous to vertebrate ADAR1. Unlike other ADAR1s, however, it contains a novel N-terminal domain of 641 aa that is predicted to be disordered, contains 67 phosphorylation motifs, and has an amino acid composition that is unusually high in serines and basic amino acids. mRNAs encoding sqADAR1 are themselves extensively edited. A third ADAR-like enzyme, sqADAR/D-like, which is not orthologous to any of the vertebrate isoforms, is also present. Messages encoding sqADAR/D-like are not edited. Studies using recombinant sqADARs suggest that only sqADAR1 and sqADAR2 are active adenosine deaminases, both on perfect duplex dsRNA and on a squid potassium channel mRNA substrate known to be edited in vivo. sqADAR/D-like shows no activity on these substrates. Overall, these results reveal some unique features in sqADARs that may contribute to the high-level RNA recoding observed in cephalopods.

6.
Curr Protoc ; 3(1): e645, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36688607

RESUMO

MicroRNAs are short non-coding RNAs with important functions in the regulation of gene expression in healthy and diseased tissues. To optimally utilize the biological and clinical information that is contained in microRNA expression levels, tools for their accurate and cost-effective quantification are needed. While the standard method, qPCR, allows for quick and cheap microRNA quantification, specificity is limited due to the short lengths of microRNAs and the high similarity between closely related microRNA family members. A-to-I editing can further diversify the microRNA pool by altering individual nucleotides. There is currently a lack of protocols for the accurate quantification of A-to-I-edited microRNA isoforms using qPCR. Here, we describe a protocol to quantify microRNA editing isoforms using two-tailed RT-qPCR, with either SYBR Green or hydrolysis probes. The user will perform reverse transcription of RNA samples, generate standard curves, and quantify the resulting cDNA in the following qPCR step. We also give guidelines for primer design and for the evaluation of assays using synthetic oligonucleotides. These tools are expected to be transferable to any A-to-I-edited microRNA and its isoforms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Two-tailed reverse transcription of A-to-I-edited microRNAs Basic Protocol 2: SYBR Green-based qPCR for A-to-I-edited microRNAs Alternate Protocol: Hydrolysis probe-based qPCR for A-to-I-edited microRNAs Support Protocol: Preparation of standard curves using synthetic RNA oligonucleotides.


Assuntos
MicroRNAs , MicroRNAs/genética , Transcrição Reversa , Oligonucleotídeos , Bioensaio
7.
RNA ; 27(11): 1412-1424, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433636

RESUMO

Even though microRNAs have been viewed as promising biomarkers for years, their clinical implementation is still lagging far behind. This is in part due to the lack of RT-qPCR technologies that can differentiate between microRNA isoforms. For example, A-to-I editing of microRNAs through adenosine deaminase acting on RNA (ADAR) enzymes can affect their expression levels and functional roles, but editing isoform-specific assays are not commercially available. Here, we describe RT-qPCR assays that are specific for editing isoforms, using microRNA-379 (miR-379) as a model. The assays are based on two-tailed RT-qPCR, and we show them to be compatible both with SYBR Green and hydrolysis-based chemistries, as well as with both qPCR and digital PCR. The assays could readily detect different miR-379 editing isoforms in various human tissues as well as changes of editing levels in ADAR-overexpressing cell lines. We found that the miR-379 editing frequency was higher in prostate cancer samples compared to benign prostatic hyperplasia samples. Furthermore, decreased expression of unedited miR-379, but not edited miR-379, was associated with treatment resistance, metastasis, and shorter overall survival. Taken together, this study presents the first RT-qPCR assays that were demonstrated to distinguish A-to-I-edited microRNAs, and shows that they can be useful in the identification of biomarkers that previously have been masked by other isoforms.


Assuntos
Adenina/química , Biomarcadores Tumorais/genética , Inosina/química , MicroRNAs/genética , Neoplasias da Próstata/patologia , Edição de RNA , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos de Coortes , Humanos , Inosina/genética , Masculino , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Neoplasias da Próstata/genética
8.
Carcinogenesis ; 41(7): 865-874, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-31738404

RESUMO

Prostate cancer is one of the most common cancers in men, yet the biology behind lethal disease progression and bone metastasis is poorly understood. In this study, we found elevated levels of microRNA-96 (miR-96) in prostate cancer bone metastasis samples. To determine the molecular mechanisms by which miR-96 deregulation contributes to metastatic progression, we performed an Argonaute2-immunoprecipitation assay, in which mRNAs associated with cell-cell interaction were enriched. The expression of two cell adhesion molecules, E-Cadherin and EpCAM, was upregulated by miR-96, and potential targets sites were identified in the coding sequences of their mRNAs. We further showed that miR-96 enhanced cell-cell adhesion between prostate cancer cells as well as their ability to bind to osteoblasts. Our findings suggest that increased levels of miR-96 give prostate cancer cells an advantage at forming metastases in the bone microenvironment due to increased cell-cell interaction. We propose that miR-96 promotes bone metastasis in prostate cancer patients by facilitating the outgrowth of macroscopic tumours in the bone.


Assuntos
Neoplasias Ósseas/genética , Caderinas/genética , Molécula de Adesão da Célula Epitelial/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Proteínas Argonautas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Metástase Neoplásica , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Microambiente Tumoral/genética
9.
Cancer Lett ; 407: 113-122, 2017 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-28412239

RESUMO

During the last decades, basic and translational research has enabled great improvements in the clinical management of cancer. However, scarcity of complete remission and many drug-induced toxicities are still a major problem in the clinics. Recently, microRNAs (miRNAs) have emerged as promising therapeutic targets due to their involvement in cancer development and progression. Their extraordinary regulatory potential, which enables regulation of entire signalling networks within the cells, makes them an interesting tool for the development of cancer therapeutics. In this review we will focus on miRNAs with experimentally proven therapeutic potential, and discuss recent advances in the technical development and clinical evaluation of miRNA-based therapeutic agents.


Assuntos
Regulação Neoplásica da Expressão Gênica , Terapia Genética/métodos , MicroRNAs/uso terapêutico , Neoplasias/terapia , Ensaios Clínicos Fase I como Assunto , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/fisiologia , Neoplasias/genética
10.
EMBO Mol Med ; 8(5): 442-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26992833

RESUMO

Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor-specific mutations not only in protein-coding sequences but also in non-coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this "dark matter" of the genome. Malignancy-driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5'-UTR and 3'-UTR Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non-coding RNA, such as microRNA, lncRNA, and lincRNA A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR-21 as well as tumor suppressor genes such as TP53/p53, APC, BRCA1, or RB1 can be affected by these alterations. In summary, coding-independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non-coding or allegedly silent mutations in tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , Animais , Humanos , Splicing de RNA , RNA não Traduzido , Sequências Reguladoras de Ácido Nucleico , Mutação Silenciosa , Regiões não Traduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...