Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 109(1): e155-e162, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37554078

RESUMO

BACKGROUND AND AIMS: During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. MATERIALS AND METHODS: Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. RESULTS: During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. CONCLUSION: DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. CLINICAL TRIAL REGISTRATION NUMBER: NCT02077348.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/metabolismo , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais , Estudos Cross-Over
2.
Front Cell Infect Microbiol ; 12: 873416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051240

RESUMO

Even with the COVID-19 pandemic, tuberculosis remains a leading cause of human death due to a single infectious agent. Until successfully treated, infected individuals may continue to transmit Mycobacterium tuberculosis bacilli to contacts. As with other respiratory pathogens, such as SARS-CoV-2, modeling the process of person-to-person transmission will inform efforts to develop vaccines and therapies that specifically impede disease transmission. The ferret (Mustela furo), a relatively inexpensive, small animal has been successfully employed to model transmissibility, pathogenicity, and tropism of influenza and other respiratory disease agents. Ferrets can become naturally infected with Mycobacterium bovis and are closely related to badgers, well known in Great Britain and elsewhere as a natural transmission vehicle for bovine tuberculosis. Herein, we report results of a study demonstrating that within 7 weeks of intratracheal infection with a high dose (>5 x 103 CFU) of M. tuberculosis bacilli, ferrets develop clinical signs and pathological features similar to acute disease reported in larger animals, and ferrets infected with very-high doses (>5 x 104 CFU) develop severe signs within two to four weeks, with loss of body weight as high as 30%. Natural transmission of this pathogen was also examined. Acutely-infected ferrets transmitted M. tuberculosis bacilli to co-housed naïve sentinels; most of the sentinels tested positive for M. tuberculosis in nasal washes, while several developed variable disease symptomologies similar to those reported for humans exposed to an active tuberculosis patient in a closed setting. Transmission was more efficient when the transmitting animal had a well-established acute infection. The findings support further assessment of this model system for tuberculosis transmission including the testing of prevention measures and vaccine efficacy.


Assuntos
COVID-19 , Tuberculose , Animais , Modelos Animais de Doenças , Furões , Humanos , Pandemias , SARS-CoV-2
3.
Physiol Rep ; 10(16): e15399, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35986508

RESUMO

Systemic administration of beta-hydroxybutyrate (BHB) decreases whole-body protein oxidation and muscle protein breakdown in humans. We aimed to determine any direct effect of BHB on skeletal muscle protein turnover when administered locally in the femoral artery. Paired design with each subject being investigated on one single occasion with one leg being infused with BHB and the opposing leg acting as a control. We studied 10 healthy male volunteers once with bilateral femoral vein and artery catheters. One artery was perfused with saline (Placebo) and one with sodium-BHB. Labelled phenylalanine and palmitate were used to assess local leg fluxes. Femoral vein concentrations of BHB were significantly higher in the intervention leg (3.4 (3.2, 3.6) mM) compared with the placebo-controlled leg (1.9 (1.8, 2.1) mM) with a peak difference of 1.4 (1.1, 1.7) mM, p < 0.0005. Net loss of phenylalanine for BHB vs Placebo -6.7(-10.8, -2.7) nmol/min vs -8.7(-13.8, -3.7) nmol/min, p = 0.52. Palmitate flux and arterio-venous difference of glucose did not differ between legs. Under these experimental conditions, we failed to observe the direct effects of BHB on skeletal muscle protein turnover. This may relate to a combination of high concentrations of BHB (close to 2 mM) imposed systemically by spillover leading to high BHB concentrations in the saline-infused leg and a lack of major differences in concentration gradients between the two sides-implying that observations were made on the upper part of the dose-response curve for BHB and the relatively small number of subjects studied.


Assuntos
Perna (Membro) , Sódio , Ácido 3-Hidroxibutírico/farmacologia , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Músculo Esquelético/metabolismo , Palmitatos/farmacologia , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Sódio/metabolismo
4.
Sci Rep ; 12(1): 3946, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273271

RESUMO

A MM-loaded sub-THz on-chip antenna with a narrow beamwidth, 9 dB gain and a simulated peak efficiency of 76% at the center frequency of 300 GHz is presented. By surrounding the antenna with a single MM-cell ring defined solely on the top metal of the back-end of line, an efficient suppression of the surface waves is obtained. The on-chip antenna has been designed using IHPs 130 nm SiGe BiCMOS technology with a 7-layer metallization stack, combined with the local backside etching process aimed to creating an air cavity which is then terminated by a reflective plane. By comparing the measured MM-loaded antenna performances to its non-MM-loaded counterpart, an enhanced integrity of the main lobe due to the MM-cells shielding effect can be observed. An excellent agreement between the simulated and measured performances has been found, which makes the MM-loaded antennas a valid alternative for the upcoming next-generation sub-THz transceivers.

5.
JSES Rev Rep Tech ; 2(2): 182-185, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35039808
6.
Endocr Res ; 46(1): 20-27, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33074729

RESUMO

PURPOSE: Fibroblast growth factor (FGF) 21 is a circulating hormone with metabolic regulatory importance. In mice, FGF21 increases in response to a ketogenic diet and fasting. In humans, a similar increase is only observed after prolonged starvation. We aim to study the acute effects of ketone bodies on circulating FGF21 levels in humans. METHODS: Participants from three randomized, placebo-controlled crossover studies, with increased endogenous or exogenous ketone bodies, were included. Study 1: patients with type 1 diabetes (T1D) (n = 9) were investigated after a) insulin deprivation and lipopolysaccharide (LPS) injection and b) insulin-controlled euglycemia. Study 2: patients with T1D (n = 9) were investigated after a) total insulin deprivation for 9 hours and b) insulin-controlled euglycemia. Study 3: Healthy adults (n = 9) were examined during a) 3-hydroxybutyrate (OHB) infusion and b) saline infusion. Plasma FGF21 was measured with immunoassay in serial samples. RESULTS: Circulating OHB levels were significantly increased to 1.3, 1.5, and 5.5 mmol/l in the three studies, but no correlations with FGF21 levels were found. Also, no correlations between FGF21, insulin, or glucagon were found. Insulin deprivation and LPS injection resulted in increased plasma FGF21 levels at t = 120 min (p = .005) which normalized at t = 240 min. CONCLUSION: We found no correlation between circulating FGF21 levels and levels of ketone bodies. This suggests that it is not ketosis per se which controls FGF21 production, but instead a rather more complex regulatory mechanism. TRIAL REGISTRATION: clinicaltrials.gov ID number: Study 1: NCT02157155 (5/6-2014), study 2: NCT02077348 (4/3-2014), and study 3: NCT02357550 (6/2-2015).


Assuntos
Diabetes Mellitus Tipo 1/sangue , Fatores de Crescimento de Fibroblastos/sangue , Insulina/metabolismo , Corpos Cetônicos/sangue , Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/sangue , Adulto , Estudos Cross-Over , Feminino , Humanos , Corpos Cetônicos/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927476

RESUMO

AIMS: Hypoglycemia hinders optimal glycemic management in type 1 diabetes (T1D). Long diabetes duration and hypoglycemia impair hormonal counter-regulatory responses to hypoglycemia. Our study was designed to test whether (1) the metabolic responses and insulin sensitivity are impaired, and (2) whether they are affected by short-lived antecedent hypoglycemia in participants with T1D. MATERIALS AND METHODS: In a randomized, crossover, 2x2 factorial design, 9 male participants with T1D and 9 comparable control participants underwent 30 minutes of hypoglycemia (p-glucose < 2.9 mmol/L) followed by a euglycemic clamp on 2 separate interventions: with and without 30 minutes of hypoglycemia the day before the study day. RESULTS: During both interventions insulin sensitivity was consistently lower, while counter-regulatory hormones were reduced, with 75% lower glucagon and 50% lower epinephrine during hypoglycemia in participants with T1D, who also displayed 40% lower lactate and 5- to 10-fold increased ketone body concentrations following hypoglycemia, whereas palmitate and glucose turnover, forearm glucose uptake, and substrate oxidation did not differ between the groups. In participants with T1D, adipose tissue phosphatase and tensin homolog (PTEN) content, hormone-sensitive lipase (HSL) phosphorylation, and muscle glucose transporter type 4 (GLUT4) content were decreased compared with controls. And antecedent hypoglycemic episodes lasting 30 minutes did not affect counter-regulation or insulin sensitivity. CONCLUSIONS: Participants with T1D displayed insulin resistance and impaired hormonal counter-regulation during hypoglycemia, whereas glucose and fatty acid fluxes were intact and ketogenic responses were amplified. We observed subtle alterations of intracellular signaling and no effect of short-lived antecedent hypoglycemia on subsequent counter-regulation. This plausibly reflects the presence of insulin resistance and implies that T1D is a condition with defective hormonal but preserved metabolic responsiveness to short-lived hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Insulina/efeitos adversos , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estudos Cross-Over , Dinamarca , Diabetes Mellitus Tipo 1/patologia , Técnica Clamp de Glucose/métodos , Humanos , Insulina/administração & dosagem , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Recidiva , Gordura Subcutânea Abdominal/efeitos dos fármacos , Gordura Subcutânea Abdominal/metabolismo , Gordura Subcutânea Abdominal/patologia , Adulto Jovem
8.
Structure ; 28(10): 1124-1130.e5, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32783953

RESUMO

The amount of antibody (Ab) variable gene sequence information is expanding rapidly, but our ability to predict the function of Abs from sequence alone is limited. Here, we describe a sequence-to-function prediction method that couples structural data for a single Ab/antigen (Ag) complex with repertoire data. We used a position-specific structure-scoring matrix (P3SM) incorporating structure-prediction scores from Rosetta to identify Ab variable loops that have predicted structural similarity to the influenza virus-specific human Ab CH65. The P3SM approach identified new members of this Ab class. Recombinant Ab expression, crystallography, and virus inhibition assays showed that the HCDR3 loops of the newly identified Abs possessed similar structure and antiviral activity as the comparator CH65. This approach enables discovery of new human Abs with desired structure and function using cDNA repertoires that are obtained readily with current amplicon sequencing techniques.


Assuntos
Anticorpos/química , Regiões Determinantes de Complementaridade/química , Epitopos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Anticorpos/genética , Anticorpos/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Cristalografia por Raios X , Bases de Dados Factuais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
9.
Metabolism ; 99: 1-10, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31260678

RESUMO

BACKGROUND: Glucocorticoid (GC) excess increases lipolysis, circulating free fatty acid concentrations and lipid oxidation rates in humans. In vitro and animal studies have shown that GCs increase adipocyte ATGL and HSL mRNA contents and HSL phosphorylations, but the effects of GC on in vivo lipase signaling in humans are uncertain. Our study was designed to test how GC administration affects ATGL and HSL related signals in human adipose tissue. MATERIAL AND METHODS: Nine healthy young men underwent 5 days administration of 37.5 mg prednisolone/d in a randomized, double-blinded, placebo-controlled crossover design. At the end of each 5 d period the subjects were studied after an overnight fast for 6.5 h including a basal period and a 2½â€¯h hyperinsulinemic euglycemic clamp. Adipose tissue biopsies were sampled from the abdominal subcutaneous adipose tissue at the end of the basal period and the clamp. RESULTS: GC treatment increased serum FFA concentrations and comparative gene identification-58 (CGI-58) mRNA - an ATGL activator - and decreased G0/G1 switch 2 gene (G0S2) mRNA - an ATGL inhibitor - in adipose tissue biopsies. In addition, pro-lipolytic ser563 HSL phosphorylations and protein kinase A (PKA) phosphorylation of PLIN1 (Perilipin-1) increased. The transcripts of ANGPTL4 (Angiopoietin-like 4) mRNA - a regulator of circulating triglycerides - were elevated by GC; as were CIDE (Cell-death Inducing DNA fragmentation factor-α-like Effector)-A and CIDE-C mRNA transcripts indicative of concurrent stimulation of lipolysis and lipogenesis. Finally GCs reduced insulin receptor phosphorylation, and Akt protein levels. CONCLUSIONS: High dose GC administration to humans leads to pro-lipolytic alterations of CGI-58, G0S2 and ANGPTL4 mRNA transcripts, increases PKA signaling to lipolysis and inhibits the insulin signal in adipose tissue. The increased CIDE-A and CIDE-C mRNA levels suggest concomitant stimulation of lipolysis and lipid storage.


Assuntos
Gordura Abdominal/metabolismo , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Prednisolona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto , Glucocorticoides/farmacologia , Técnica Clamp de Glucose , Voluntários Saudáveis , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Perilipina-1/metabolismo , Prednisolona/uso terapêutico , Fatores de Tempo , Adulto Jovem
10.
J Cancer Res Clin Oncol ; 145(6): 1449-1460, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968255

RESUMO

BACKGROUND: A growing body of evidence suggests that exercise training has beneficial effects in cancer patients. The aim of the present study was to investigate the molecular basis underlying these beneficial effects in skeletal muscle from cancer patients. METHODS: We investigated expression of selected proteins involved in cellular processes known to orchestrate adaptation to exercise training by western blot. Skeletal muscle biopsies were sampled from ten cancer patients before and after 4-7 weeks of ongoing chemotherapy, and subsequently after 10 weeks of continued chemotherapy in combination with exercise training. Biopsies from ten healthy matched subjects served as reference. RESULTS: The expression of the insulin-regulated glucose transporter, GLUT4, increased during chemotherapy and continued to increase during exercise training. A similar trend was observed for ACC, a key enzyme in the biosynthesis and oxidation of fatty acids, but we did not observe any changes in other regulators of substrate metabolism (AMPK and PDH) or mitochondrial proteins (Cyt-C, COX-IV, SDHA, and VDAC). Markers of proteasomal proteolysis (MURF1 and ATROGIN-1) decreased during chemotherapy, but did not change further during chemotherapy combined with exercise training. A similar pattern was observed for autophagy-related proteins such as ATG5, p62, and pULK1 Ser757, but not ULK1 and LC3BII/LC3BI. Phosphorylation of FOXO3a at Ser318/321 did not change during chemotherapy, but decreased during exercise training. This could suggest that FOXO3a-mediated transcriptional regulation of MURF1 and ATROGIN-1 serves as a mechanism by which exercise training maintains proteolytic systems in skeletal muscle in cancer patients. Phosphorylation of proteins that regulate protein synthesis (mTOR at Ser2448 and 4EBP1 at Thr37/46) increased during chemotherapy and leveled off during exercise training. Finally, chemotherapy tended to increase the number of satellite cells in type 1 fibers, without any further change during chemotherapy and exercise training. Conversely, the number of satellite cells in type 2 fibers did not change during chemotherapy, but increased during chemotherapy combined with exercise training. CONCLUSIONS: Molecular signaling cascades involved in exercise training are disturbed during cancer and chemotherapy, and exercise training may prevent further disruption of these pathways. TRIAL REGISTRATION: The study was approved by the local Scientific Ethics Committee of the Central Denmark Region (Project ID: M-2014-15-14; date of approval: 01/27/2014) and the Danish Data Protection Agency (case number 2007-58-0010; date of approval: 01/28/2015). The trial was registered at http//www.clinicaltrials.gov (registration number: NCT02192216; date of registration 07/17-2014).


Assuntos
Exercício Físico , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Neoplasias/fisiopatologia , Adulto , Feminino , Transportador de Glucose Tipo 4/biossíntese , Humanos , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Ubiquitina/metabolismo
11.
Diabetologia ; 62(3): 494-503, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506451

RESUMO

AIMS/HYPOTHESIS: Lack of insulin and infection/inflammation are the two most common causes of diabetic ketoacidosis (DKA). We used insulin withdrawal followed by insulin administration as a clinical model to define effects on substrate metabolism and to test whether increased levels of counter-regulatory hormones and cytokines and altered adipose tissue signalling participate in the early phases of DKA. METHODS: Nine individuals with type 1 diabetes, without complications, were randomly studied twice, in a crossover design, for 5 h followed by 2.5 h high-dose insulin clamp: (1) insulin-controlled euglycaemia (control) and (2) after 14 h of insulin withdrawal in a university hospital setting. RESULTS: Insulin withdrawal increased levels of glucose (6.1 ± 0.5 vs 18.6 ± 0.5 mmol/l), NEFA, 3-OHB (127 ± 18 vs 1837 ± 298 µmol/l), glucagon, cortisol and growth hormone and decreased HCO3- and pH, without affecting catecholamine or cytokine levels. Whole-body energy expenditure, endogenous glucose production (1.55 ± 0.13 vs 2.70 ± 0.31 mg kg-1 min-1), glucose turnover, non-oxidative glucose disposal, lipid oxidation, palmitate flux (73 [range 39-104] vs 239 [151-474] µmol/min), protein oxidation and phenylalanine flux all increased, whereas glucose oxidation decreased. In adipose tissue, Ser473 phosphorylation of Akt and mRNA levels of G0S2 decreased, whereas CGI-58 (also known as ABHD5) mRNA increased. Protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase phosphorylations were unaltered. Insulin therapy decreased plasma glucose concentrations dramatically after insulin withdrawal, without any detectable effect on net forearm glucose uptake. CONCLUSIONS/INTERPRETATION: Release of counter-regulatory hormones and overall increased catabolism, including lipolysis, are prominent features of preacidotic ketosis induced by insulin withdrawal, and dampening of Akt insulin signalling and transcriptional modulation of ATGL activity are involved. The lack of any increase in net forearm glucose uptake during insulin therapy after insulin withdrawal indicates muscle insulin resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT02077348 FUNDING: This study was supported by Aarhus University and the KETO Study Group/Danish Agency for Science Technology and Innovation.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Metabolismo Energético/fisiologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Cetose/metabolismo , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Appl Physiol (1985) ; 125(4): 1204-1209, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070610

RESUMO

Acute exercise increases autophagic signaling through Unc-51 like kinase-1 (ULK1) in human skeletal muscle during both anabolic and catabolic conditions. The aim of the present study was to investigate if changes in ULK1 Ser555 phosphorylation during exercise are reflected by changes in phosphorylation of a newly identified ULK1 substrate (ATG14 Ser29) and to elucidate the involvement of circulatory hormones in the regulation of autophagy in human skeletal muscle. We show that 1 h of cycling exercise increases ATG14 Ser29 phosphorylation during both hyperinsulinemic euglycemic and euinsulinemic euglycemic conditions. This could suggest that counterregulatory hormones stimulate autophagy in skeletal muscle, as circulating concentrations of these hormones are highly elevated during exercise. Furthermore, ATG14 Ser29 correlated positively with ULK1 phosphorylation, suggesting that ULK1 Ser555 (activating site) phosphorylation reflects ULK1 kinase activity. In a separate series of experiments, we show that insulin stimulates ULK1 phosphorylation at Ser757 (inhibitory site) in both hypoglycemic and euglycemic conditions, suggesting that counterregulatory hormones (such as epinephrine, norepinephrine, growth hormone, and glucagon) have limited effects on autophagy signaling in human skeletal muscle. In conclusion, 1 h of cycling exercise increases phosphorylation of ATG14 at Ser29 in a pattern that mirrors ULK1 phosphorylation at Ser555. Moreover, insulin effects on autophagy signaling in human skeletal muscle are independent of hypoglycemic and euglycemic conditions.NEW & NOTEWORTHY Autophagy signaling is regulated in a hierarchical order by exercise, insulin, and counterregulatory hormones. Exercise-induced autophagy signaling is stimulated by local factors in skeletal muscle rather than circulatory hormones. Unc-51 like kinase-1 (ULK1) phosphorylation at Ser555 reflects ULK1 kinase activity.

13.
Nat Commun ; 9(1): 2669, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991715

RESUMO

The high rate of antigenic drift in seasonal influenza viruses necessitates frequent changes in vaccine composition. Recent seasonal H3 vaccines do not protect against swine-origin H3N2 variant (H3N2v) strains that recently have caused severe human infections. Here, we report a human VH1-69 gene-encoded monoclonal antibody (mAb) designated H3v-47 that exhibits potent cross-reactive neutralization activity against human and swine H3N2 viruses that circulated since 1989. The crystal structure and electron microscopy reconstruction of H3v-47 Fab with the H3N2v hemagglutinin (HA) identify a unique epitope spanning the vestigial esterase and receptor-binding subdomains that is distinct from that of any known neutralizing antibody for influenza A H3 viruses. MAb H3v-47 functions largely by blocking viral egress from infected cells. Interestingly, H3v-47 also engages Fcγ receptor and mediates antibody dependent cellular cytotoxicity (ADCC). This newly identified conserved epitope can be used in design of novel immunogens for development of broadly protective H3 vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Reações Cruzadas/imunologia , Epitopos/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia
14.
Sci Rep ; 8(1): 1603, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371638

RESUMO

Human Immunodeficiency Virus Type 1 (HIV-1) remains one of the leading causes of death worldwide. Present combination antiretroviral therapy has substantially improved HIV-1 related pathology. However, delivery of therapeutic agents to the HIV reservoir organ like Central nervous system (CNS) remains a major challenge primarily due to the ineffective transmigration of drugs through Blood Brain Barrier (BBB). The recent advent of nanomedicine-based drug delivery has stimulated the development of innovative systems for drug delivery. In this regard, particular focus has been given to nanodiamond due to its natural biocompatibility and non-toxic nature-making it a more efficient drug carrier than other carbon-based materials. Considering its potential and importance, we have characterized unmodified and surface-modified (-COOH and -NH2) nanodiamond for its capacity to load the anti-HIV-1 drug efavirenz and cytotoxicity, in vitro. Overall, our study has established that unmodified nanodiamond conjugated drug formulation has significantly higher drug loading capacity than surface-modified nanodiamond with minimum toxicity. Further, this nanodrug formulation was characterized by its drug dissolution profile, transmigration through the BBB, and its therapeutic efficacy. The present biological characterizations provide a foundation for further study of in-vivo pharmacokinetics and pharmacodynamics of nanodiamond-based anti-HIV drugs.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/farmacocinética , Benzoxazinas/farmacologia , Benzoxazinas/farmacocinética , Portadores de Fármacos/metabolismo , Nanodiamantes , Alcinos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclopropanos , Portadores de Fármacos/toxicidade , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
15.
J Clin Endocrinol Metab ; 102(11): 4031-4040, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945869

RESUMO

Context: Short-term glucocorticoid exposure increases serum insulinlike growth factor I (IGF-I) concentrations but antagonizes IGF-I tissue signaling. The underlying mechanisms remain unknown. Objective: To identify at which levels glucocorticoid inhibits IGF-I signaling. Design and Methods: Nineteen healthy males received prednisolone (37.5 mg/d) and placebo for 5 days in a randomized, double-blinded, placebo-controlled crossover study. Serum was collected on days 1, 3, and 5, and abdominal skin suction blister fluid (SBF; ~interstitial fluid) was taken on day 5 (n = 9) together with muscle biopsy specimens (n = 19). The ability of serum and SBF to activate the IGF-I receptor (IGF-IR) (bioactive IGF) and its downstream signaling proteins was assessed using IGF-IR-transfected cells. Results: Prednisolone increased IGF-I concentrations and bioactive IGF in serum (P ≤ 0.001) but not in SBF, which, compared with serum, contained less bioactive IGF (~28%) after prednisolone (P < 0.05). This observation was unexplained by SBF concentrations of IGFs and IGF-binding proteins (IGFBPs) 1 to 4. However, following prednisolone treatment, SBF contained less IGFBP-4 fragments (P < 0.05) generated by pregnancy-associated plasma protein A (PAPP-A). Concomitantly, prednisolone increased SBF levels of stanniocalcin 2 (STC2) (P = 0.02) compared with serum. STC2 blocks PAPP-A from cleaving IGFBP-4. Finally, prednisolone suppressed post-IGF-IR signaling pathways at the level of insulin receptor substrate 1 (P < 0.05) but did not change skeletal muscle IGF-IR, IGF-I, or STC2 messenger RNA. Conclusion: Prednisolone increased IGF-I concentrations and IGF bioactivity in serum but not in tissue fluid. The latter may relate to a STC2-mediated inhibition of PAPP-A in tissue fluids. Furthermore, prednisolone induced post-IGF-IR resistance. Thus, glucocorticoid may exert distinct, compartment-specific effects on IGF action.


Assuntos
Músculos/efeitos dos fármacos , Músculos/metabolismo , Prednisolona/farmacologia , Receptor IGF Tipo 1/metabolismo , Adulto , Análise Química do Sangue , Estudos Cross-Over , Método Duplo-Cego , Líquido Extracelular/metabolismo , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Placebos , Receptor IGF Tipo 1/sangue , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
16.
Cell Chem Biol ; 24(8): 935-943.e7, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28820963

RESUMO

The α-oxoaldehyde methylglyoxal is a ubiquitous and highly reactive metabolite known to be involved in aging- and diabetes-related diseases. If not detoxified by the endogenous glyoxalase system, it exerts its detrimental effects primarily by reacting with biopolymers such as DNA and proteins. We now demonstrate that during ketosis, another metabolic route is operative via direct non-enzymatic aldol reaction between methylglyoxal and the ketone body acetoacetate, leading to 3-hydroxyhexane-2,5-dione. This novel metabolite is present at a concentration of 10%-20% of the methylglyoxal level in the blood of insulin-starved patients. By employing a metabolite-alkyne-tagging strategy it is clarified that 3-hydroxyhexane-2,5-dione is further metabolized to non-glycating species in human blood. The discovery represents a new direction within non-enzymatic metabolism and within the use of alkyne-tagging for metabolism studies and it revitalizes acetoacetate as a competent endogenous carbon nucleophile.


Assuntos
Acetoacetatos/química , Corpos Cetônicos/química , Aldeído Pirúvico/sangue , Acetoacetatos/metabolismo , Alcinos/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Hexanonas/análise , Hexanonas/sangue , Hexanonas/metabolismo , Humanos , Corpos Cetônicos/metabolismo , Espectrometria de Massas , Aldeído Pirúvico/análise , Aldeído Pirúvico/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo
17.
Diabetes ; 66(9): 2483-2494, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596236

RESUMO

Hypoglycemia is the leading limiting factor in glycemic management of insulin-treated diabetes. Skeletal muscle is the predominant site of insulin-mediated glucose disposal. Our study used a crossover design to test to what extent insulin-induced hypoglycemia affects glucose uptake in skeletal muscle and whether hypoglycemia counterregulation modulates insulin and catecholamine signaling and glycogen synthase activity in skeletal muscle. Nine healthy volunteers were examined on three randomized study days: 1) hyperinsulinemic hypoglycemia (bolus insulin), 2) hyperinsulinemic euglycemia (bolus insulin and glucose infusion), and 3) saline control with skeletal muscle biopsies taken just before, 30 min after, and 75 min after insulin/saline injection. During hypoglycemia, glucose levels reached a nadir of ∼2.0 mmol/L, and epinephrine rose to ∼900 pg/mL. Hypoglycemia impaired insulin-stimulated glucose disposal and glucose clearance in skeletal muscle, whereas insulin signaling in glucose transport was unaffected by hypoglycemia. Insulin-stimulated glycogen synthase activity was completely ablated during hyperinsulinemic hypoglycemia, and catecholamine signaling via cAMP-dependent protein kinase and phosphorylation of inhibiting sites on glycogen synthase all increased.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Hipoglicemia/metabolismo , Insulina/efeitos adversos , Músculo Esquelético/enzimologia , Adolescente , Adulto , Sequência de Aminoácidos , Estudos Cross-Over , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glicogênio Sintase/genética , Humanos , Hipoglicemia/etiologia , Masculino , Fosforilação , Adulto Jovem
18.
Diabetologia ; 60(7): 1197-1206, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389705

RESUMO

AIMS/HYPOTHESIS: Diabetic ketoacidosis (DKA) is often caused by concomitant systemic inflammation and lack of insulin. Here we used an experimental human model to test whether and how metabolic responses to insulin are impaired in the early phases of DKA with a specific focus on skeletal muscle metabolism. METHODS: Nine individuals with type 1 diabetes from a previously published cohort were investigated twice at Aarhus University Hospital using a 120 min infusion of insulin (3.0/1.5 mU kg-1 min-1) after an overnight fast under: (1) euglycaemic conditions (CTR) or (2) hyperglycaemic ketotic conditions (KET) induced by an i.v. bolus of lipopolysaccharide and 85% reduction in insulin dosage. The primary outcome was insulin resistance in skeletal muscle. Participants were randomly assigned to one of the two arms at the time of screening using www.randomizer.org . The study was not blinded. RESULTS: All nine volunteers completed the 2 days and are included in the analysis. Circulating concentrations of glucose and 3-hydroxybutyrate increased during KET (mean ± SEM 17.7 ± 0.6 mmol/l and 1.6 ± 0.2 mmol/l, respectively), then decreased after insulin treatment (6.6 ± 0.7 mmol/l and 0.1 ± 0.07 mmol/l, respectively). Prior to insulin infusion (KET vs CTR) isotopically determined endogenous glucose production rates were 17 ± 1.7 µmol kg-1 min-1 vs 8 ± 1.3 µmol kg-1 min-1 (p = 0.003), whole body phenylalanine fluxes were 2.9 ± 0.5 µmol kg-1 min-1 vs 3.1 ± 0.4 µmol kg-1 min-1 (p = 0.77) and urea excretion rates were 16.9 ± 2.4 g/day vs 7.3 ± 1.7 g/day (p = 0.01). Insulin failed to stimulate forearm glucose uptake and glucose oxidation in KET compared with CTR (p < 0.05). Glycogen synthase phosphorylation was impaired in skeletal muscle. CONCLUSIONS/INTERPRETATION: In KET, hyperglycaemia is primarily driven by increased endogenous glucose production. Insulin stimulation during early phases of DKA is associated with reduced glucose disposal in skeletal muscle, impaired glycogen synthase function and lower glucose oxidation. This underscores the presence of muscle insulin resistance in the pathogenesis of DKA. Trial registration www.clinicaltrials.gov (ID number: NCT02157155). Funding This work was funded by the Danish Council for Strategic Research (grant no. 0603-00479B).


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/tratamento farmacológico , Insulina/deficiência , Lipopolissacarídeos/efeitos adversos , Ácido 3-Hidroxibutírico/sangue , Adulto , Biópsia , Glicemia/análise , Estudos Cross-Over , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Cetoacidose Diabética/complicações , Cetoacidose Diabética/fisiopatologia , Glicogênio Sintase/metabolismo , Humanos , Inflamação , Insulina/uso terapêutico , Resistência à Insulina , Masculino , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Fenilalanina/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
19.
Diabetologia ; 60(1): 143-152, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27734104

RESUMO

AIMS/HYPOTHESIS: The aims of this study were to determine the role of lipolysis in hypoglycaemia and define the underlying intracellular mechanisms. METHODS: Nine healthy volunteers were randomised to treatment order of three different treatments (crossover design). Treatments were: (1) saline control; (2) hyperinsulinaemic hypoglycaemia (HH; i.v. bolus of 0.1 U/kg insulin); and (3) hyperinsulinaemic euglycaemia (HE; i.v. bolus of 0.1 U/kg insulin and 20% glucose). Inclusion criteria were that volunteers were healthy, aged >18 years, had a BMI between 19 and 26 kg/m2, and provided both written and oral informed consent. Exclusion criteria were the presence of a known chronic disease (including diabetes mellitus, epilepsy, ischaemic heart disease and cardiac arrhythmias) and regular use of prescription medication. The data was collected at the medical research facilities at Aarhus University Hospital, Denmark. The primary outcome was palmitic acid flux. Participants were blinded to intervention order, but caregivers were not. RESULTS: Adrenaline (epinephrine) and glucagon concentrations were higher during HH than during both HE and control treatments. NEFA levels and lipid oxidation rates (determined by indirect calorimetry) returned to control levels after 105 min. Palmitate flux was increased to control levels during HH (p = NS) and was more than twofold higher than during HE (overall mean difference between HH vs HE, 114 [95% CI 64, 165 µmol/min]; p < 0.001). In subcutaneous adipose tissue biopsies, we found elevated levels of hormone-sensitive lipase (HSL) and perilipin-1 phosphorylation 30 min after insulin injection during HH compared with both control and HE. There were no changes in the levels of adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58) or G0/G1 switch gene 2 (G0S2) proteins. Insulin-stimulated phosphorylation of Akt and mTOR were unaffected by hypoglycaemia. Expression of the G0S2 gene increased during HE and HH compared with control, without changes in ATGL (also known as PNPLA2) or CGI-58 (also known as ABHD5) mRNA levels. CONCLUSIONS/INTERPRETATION: These findings suggest that NEFAs become a major fuel source during insulin-induced hypoglycaemia and that lipolysis may be an important component of the counter-regulatory response. These effects appear to be mediated by rapid stimulation of protein kinase A (PKA) and HSL, compatible with activation of the ß-adrenergic catecholamine signalling pathway. TRIAL REGISTRATION: ClinicalTrials.gov NCT01919788 FUNDING: : The study was funded by Aarhus University, the Novo Nordisk Foundation and the KETO Study Group/Danish Agency for Science Technology and Innovation (grant no. 0603-00479, to NM).


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/fisiopatologia , Insulina/farmacologia , Lipólise/fisiologia , Adolescente , Adulto , Glicemia/metabolismo , Peptídeo C/sangue , Estudos Cross-Over , Epinefrina/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Glucagon/sangue , Humanos , Insulina/sangue , Ácido Láctico/sangue , Metabolismo dos Lipídeos/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Norepinefrina/sangue , Adulto Jovem
20.
Virusdisease ; 27(4): 357-368, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28004015

RESUMO

Influenza A virus (IFV) replicates its genome in the nucleus of infected cells and uses the cellular protein transport system for genome trafficking from the nucleus to the plasma membrane. However, many details of the mechanism of this process, and its relationship to subsequent cytoplasmic virus trafficking, have not been elucidated. We examined the effect of nuclear transport inhibitors Leptomycin B (LB), 5,6 dichloro-1-ß-d-ribofuranosyl-benzimidazole (DRB), the vesicular transport inhibitor Brefeldin A (BFA), the caspase inhibitor ZWEHD, and microtubule inhibitor Nocodazole (NOC) on virus replication and intracellular trafficking of viral nucleoprotein (NP) from the nucleus to the ER and Golgi. Also, we carried out complementary studies to determine the effect of IFV on intracellular membranes. Inhibition of the CRM1 and TAP-P15 nuclear transport pathways by DRB and LB blocked completely the export of virus. Inhibition of vesicular trafficking by BFA, NOC, and ZWEHD also affected influenza infection. Interestingly, IFV infection induced fragmentation of the Golgi complex resulting in diffuse distribution of large and small vesicles throughout the cytoplasm. Live-cell microscopy revealed expansion of Golgi localization signals indicating progressive dispersion of Golgi positive structures, resulting in the disassembly of the Golgi ribbon structure. Other vesicular components (Rab1b, ARF1 and GBF1) were also found to be required for IFV infection. Furthermore, the exact step at which IFV infection disrupts vesicle trafficking was identified as the ER-Golgi intermediate compartment. These findings suggest that IFV NP is trafficked from the nucleus via the CRM1 and TAP pathways. IFV modulates vesicular trafficking inducing disruption of the Golgi complex. These studies provide insight on the ways in which IFV affects intracellular trafficking of different host proteins and will facilitate identification of useful pharmaceutical targets to abrogate virus replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...