Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 109(1): e155-e162, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37554078

RESUMO

BACKGROUND AND AIMS: During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. MATERIALS AND METHODS: Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. RESULTS: During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. CONCLUSION: DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. CLINICAL TRIAL REGISTRATION NUMBER: NCT02077348.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/metabolismo , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais , Estudos Cross-Over
2.
Diabetologia ; 62(3): 494-503, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506451

RESUMO

AIMS/HYPOTHESIS: Lack of insulin and infection/inflammation are the two most common causes of diabetic ketoacidosis (DKA). We used insulin withdrawal followed by insulin administration as a clinical model to define effects on substrate metabolism and to test whether increased levels of counter-regulatory hormones and cytokines and altered adipose tissue signalling participate in the early phases of DKA. METHODS: Nine individuals with type 1 diabetes, without complications, were randomly studied twice, in a crossover design, for 5 h followed by 2.5 h high-dose insulin clamp: (1) insulin-controlled euglycaemia (control) and (2) after 14 h of insulin withdrawal in a university hospital setting. RESULTS: Insulin withdrawal increased levels of glucose (6.1 ± 0.5 vs 18.6 ± 0.5 mmol/l), NEFA, 3-OHB (127 ± 18 vs 1837 ± 298 µmol/l), glucagon, cortisol and growth hormone and decreased HCO3- and pH, without affecting catecholamine or cytokine levels. Whole-body energy expenditure, endogenous glucose production (1.55 ± 0.13 vs 2.70 ± 0.31 mg kg-1 min-1), glucose turnover, non-oxidative glucose disposal, lipid oxidation, palmitate flux (73 [range 39-104] vs 239 [151-474] µmol/min), protein oxidation and phenylalanine flux all increased, whereas glucose oxidation decreased. In adipose tissue, Ser473 phosphorylation of Akt and mRNA levels of G0S2 decreased, whereas CGI-58 (also known as ABHD5) mRNA increased. Protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase phosphorylations were unaltered. Insulin therapy decreased plasma glucose concentrations dramatically after insulin withdrawal, without any detectable effect on net forearm glucose uptake. CONCLUSIONS/INTERPRETATION: Release of counter-regulatory hormones and overall increased catabolism, including lipolysis, are prominent features of preacidotic ketosis induced by insulin withdrawal, and dampening of Akt insulin signalling and transcriptional modulation of ATGL activity are involved. The lack of any increase in net forearm glucose uptake during insulin therapy after insulin withdrawal indicates muscle insulin resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT02077348 FUNDING: This study was supported by Aarhus University and the KETO Study Group/Danish Agency for Science Technology and Innovation.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Metabolismo Energético/fisiologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Cetose/metabolismo , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Diabetes ; 66(9): 2483-2494, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596236

RESUMO

Hypoglycemia is the leading limiting factor in glycemic management of insulin-treated diabetes. Skeletal muscle is the predominant site of insulin-mediated glucose disposal. Our study used a crossover design to test to what extent insulin-induced hypoglycemia affects glucose uptake in skeletal muscle and whether hypoglycemia counterregulation modulates insulin and catecholamine signaling and glycogen synthase activity in skeletal muscle. Nine healthy volunteers were examined on three randomized study days: 1) hyperinsulinemic hypoglycemia (bolus insulin), 2) hyperinsulinemic euglycemia (bolus insulin and glucose infusion), and 3) saline control with skeletal muscle biopsies taken just before, 30 min after, and 75 min after insulin/saline injection. During hypoglycemia, glucose levels reached a nadir of ∼2.0 mmol/L, and epinephrine rose to ∼900 pg/mL. Hypoglycemia impaired insulin-stimulated glucose disposal and glucose clearance in skeletal muscle, whereas insulin signaling in glucose transport was unaffected by hypoglycemia. Insulin-stimulated glycogen synthase activity was completely ablated during hyperinsulinemic hypoglycemia, and catecholamine signaling via cAMP-dependent protein kinase and phosphorylation of inhibiting sites on glycogen synthase all increased.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Hipoglicemia/metabolismo , Insulina/efeitos adversos , Músculo Esquelético/enzimologia , Adolescente , Adulto , Sequência de Aminoácidos , Estudos Cross-Over , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glicogênio Sintase/genética , Humanos , Hipoglicemia/etiologia , Masculino , Fosforilação , Adulto Jovem
4.
Diabetologia ; 60(7): 1197-1206, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389705

RESUMO

AIMS/HYPOTHESIS: Diabetic ketoacidosis (DKA) is often caused by concomitant systemic inflammation and lack of insulin. Here we used an experimental human model to test whether and how metabolic responses to insulin are impaired in the early phases of DKA with a specific focus on skeletal muscle metabolism. METHODS: Nine individuals with type 1 diabetes from a previously published cohort were investigated twice at Aarhus University Hospital using a 120 min infusion of insulin (3.0/1.5 mU kg-1 min-1) after an overnight fast under: (1) euglycaemic conditions (CTR) or (2) hyperglycaemic ketotic conditions (KET) induced by an i.v. bolus of lipopolysaccharide and 85% reduction in insulin dosage. The primary outcome was insulin resistance in skeletal muscle. Participants were randomly assigned to one of the two arms at the time of screening using www.randomizer.org . The study was not blinded. RESULTS: All nine volunteers completed the 2 days and are included in the analysis. Circulating concentrations of glucose and 3-hydroxybutyrate increased during KET (mean ± SEM 17.7 ± 0.6 mmol/l and 1.6 ± 0.2 mmol/l, respectively), then decreased after insulin treatment (6.6 ± 0.7 mmol/l and 0.1 ± 0.07 mmol/l, respectively). Prior to insulin infusion (KET vs CTR) isotopically determined endogenous glucose production rates were 17 ± 1.7 µmol kg-1 min-1 vs 8 ± 1.3 µmol kg-1 min-1 (p = 0.003), whole body phenylalanine fluxes were 2.9 ± 0.5 µmol kg-1 min-1 vs 3.1 ± 0.4 µmol kg-1 min-1 (p = 0.77) and urea excretion rates were 16.9 ± 2.4 g/day vs 7.3 ± 1.7 g/day (p = 0.01). Insulin failed to stimulate forearm glucose uptake and glucose oxidation in KET compared with CTR (p < 0.05). Glycogen synthase phosphorylation was impaired in skeletal muscle. CONCLUSIONS/INTERPRETATION: In KET, hyperglycaemia is primarily driven by increased endogenous glucose production. Insulin stimulation during early phases of DKA is associated with reduced glucose disposal in skeletal muscle, impaired glycogen synthase function and lower glucose oxidation. This underscores the presence of muscle insulin resistance in the pathogenesis of DKA. Trial registration www.clinicaltrials.gov (ID number: NCT02157155). Funding This work was funded by the Danish Council for Strategic Research (grant no. 0603-00479B).


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/tratamento farmacológico , Insulina/deficiência , Lipopolissacarídeos/efeitos adversos , Ácido 3-Hidroxibutírico/sangue , Adulto , Biópsia , Glicemia/análise , Estudos Cross-Over , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Cetoacidose Diabética/complicações , Cetoacidose Diabética/fisiopatologia , Glicogênio Sintase/metabolismo , Humanos , Inflamação , Insulina/uso terapêutico , Resistência à Insulina , Masculino , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Fenilalanina/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
5.
Diabetologia ; 60(1): 143-152, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27734104

RESUMO

AIMS/HYPOTHESIS: The aims of this study were to determine the role of lipolysis in hypoglycaemia and define the underlying intracellular mechanisms. METHODS: Nine healthy volunteers were randomised to treatment order of three different treatments (crossover design). Treatments were: (1) saline control; (2) hyperinsulinaemic hypoglycaemia (HH; i.v. bolus of 0.1 U/kg insulin); and (3) hyperinsulinaemic euglycaemia (HE; i.v. bolus of 0.1 U/kg insulin and 20% glucose). Inclusion criteria were that volunteers were healthy, aged >18 years, had a BMI between 19 and 26 kg/m2, and provided both written and oral informed consent. Exclusion criteria were the presence of a known chronic disease (including diabetes mellitus, epilepsy, ischaemic heart disease and cardiac arrhythmias) and regular use of prescription medication. The data was collected at the medical research facilities at Aarhus University Hospital, Denmark. The primary outcome was palmitic acid flux. Participants were blinded to intervention order, but caregivers were not. RESULTS: Adrenaline (epinephrine) and glucagon concentrations were higher during HH than during both HE and control treatments. NEFA levels and lipid oxidation rates (determined by indirect calorimetry) returned to control levels after 105 min. Palmitate flux was increased to control levels during HH (p = NS) and was more than twofold higher than during HE (overall mean difference between HH vs HE, 114 [95% CI 64, 165 µmol/min]; p < 0.001). In subcutaneous adipose tissue biopsies, we found elevated levels of hormone-sensitive lipase (HSL) and perilipin-1 phosphorylation 30 min after insulin injection during HH compared with both control and HE. There were no changes in the levels of adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58) or G0/G1 switch gene 2 (G0S2) proteins. Insulin-stimulated phosphorylation of Akt and mTOR were unaffected by hypoglycaemia. Expression of the G0S2 gene increased during HE and HH compared with control, without changes in ATGL (also known as PNPLA2) or CGI-58 (also known as ABHD5) mRNA levels. CONCLUSIONS/INTERPRETATION: These findings suggest that NEFAs become a major fuel source during insulin-induced hypoglycaemia and that lipolysis may be an important component of the counter-regulatory response. These effects appear to be mediated by rapid stimulation of protein kinase A (PKA) and HSL, compatible with activation of the ß-adrenergic catecholamine signalling pathway. TRIAL REGISTRATION: ClinicalTrials.gov NCT01919788 FUNDING: : The study was funded by Aarhus University, the Novo Nordisk Foundation and the KETO Study Group/Danish Agency for Science Technology and Innovation (grant no. 0603-00479, to NM).


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/fisiopatologia , Insulina/farmacologia , Lipólise/fisiologia , Adolescente , Adulto , Glicemia/metabolismo , Peptídeo C/sangue , Estudos Cross-Over , Epinefrina/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Glucagon/sangue , Humanos , Insulina/sangue , Ácido Láctico/sangue , Metabolismo dos Lipídeos/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Norepinefrina/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...