Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(6): 125, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727862

RESUMO

KEY MESSAGE: PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.


Assuntos
Haplótipos , Raízes de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fotoperíodo , Genes de Plantas , Marcadores Genéticos
2.
Plant Genome ; 17(1): e20417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38066702

RESUMO

Genomic selection in sugarcane faces challenges due to limited genomic tools and high genomic complexity, particularly because of its high and variable ploidy. The classification of genotypes for single nucleotide polymorphisms (SNPs) becomes difficult due to the wide range of possible allele dosages. Previous genomic studies in sugarcane used pseudo-diploid genotyping, grouping all heterozygotes into a single class. In this study, we investigate the use of continuous genotypes as a proxy for allele-dosage in genomic prediction models. The hypothesis is that continuous genotypes could better reflect allele dosage at SNPs linked to mutations affecting target traits, resulting in phenotypic variation. The dataset included genotypes of 1318 clones at 58K SNP markers, with about 26K markers filtered using standard quality controls. Predictions for tonnes of cane per hectare (TCH), commercial cane sugar (CCS), and fiber content (Fiber) were made using parametric, non-parametric, and Bayesian methods. Continuous genotypes increased accuracy by 5%-7% for CCS and Fiber. The pseudo-diploid parametrization performed better for TCH. Reproducing kernel Hilbert spaces model with Gaussian kernel and AK4 (arc-cosine kernel with hidden layer 4) kernel outperformed other methods for TCH and CCS, suggesting that non-additive effects might influence these traits. The prevalence of low-dosage markers in the study may have limited the benefits of approximating allele-dosage information with continuous genotypes in genomic prediction models. Continuous genotypes simplify genomic prediction in polyploid crops, allowing additional markers to be used without adhering to pseudo-diploid inheritance. The approach can particularly benefit high ploidy species or emerging crops with unknown ploidy.


Assuntos
Saccharum , Saccharum/genética , Teorema de Bayes , Genótipo , Fenótipo , Genômica
3.
Front Plant Sci ; 14: 1260517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023905

RESUMO

Mate-allocation strategies in breeding programs can improve progeny performance by harnessing non-additive genetic effects. These approaches prioritise predicted progeny merit over parental breeding value, making them particularly appealing for clonally propagated crops such as sugarcane. We conducted a comparative analysis of mate-allocation strategies, exploring utilising non-additive and heterozygosity effects to maximise clonal performance with schemes that solely consider additive effects to optimise breeding value. Using phenotypic and genotypic data from a population of 2,909 clones evaluated in final assessment trials of Australian sugarcane breeding programs, we focused on three important traits: tonnes of cane per hectare (TCH), commercial cane sugar (CCS), and Fibre. By simulating families from all possible crosses (1,225) with 50 progenies each, we predicted the breeding and clonal values of progeny using two models: GBLUP (considering additive effects only) and extended-GBLUP (incorporating additive, non-additive, and heterozygosity effects). Integer linear programming was used to identify the optimal mate-allocation among selected parents. Compared to breeding value-based approaches, mate-allocation strategies based on clonal performance yielded substantial improvements, with predicted progeny values increasing by 57% for TCH, 12% for CCS, and 16% for fibre. Our simulation study highlights the effectiveness of mate-allocation approaches that exploit non-additive and heterozygosity effects, resulting in superior clonal performance. However, there was a notable decline in additive gain, particularly for TCH, likely due to significant epistatic effects. When selecting crosses based on clonal performance for TCH, the inbreeding coefficient of progeny was significantly lower compared to random mating, underscoring the advantages of leveraging non-additive and heterozygosity effects in mitigating inbreeding depression. Thus, mate-allocation strategies are recommended in clonally propagated crops to enhance clonal performance and reduce the negative impacts of inbreeding.

4.
Theor Appl Genet ; 136(11): 223, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838631

RESUMO

In woody perennial plants, quantitative genetics and association studies remain scarce for root-related traits, due to the time required to obtain mature plants and the complexity of phenotyping. In grapevine, a grafted cultivated plant, most of the rootstocks used are hybrids between American Vitis species (V. rupestris, V. riparia, and V. berlandieri). In this study, we used a wild population of an American Vitis species (V. berlandieri) to analyze the genetic architecture of the root-related traits of rootstocks in a grafted context. We studied a population consisting of 211 genotypes, with one to five replicates each (n = 846 individuals), plus four commercial rootstocks as control genotypes (110R, 5BB, Börner, and SO4). After two independent years of experimentation, the best linear unbiased estimates method revealed root-related traits with a moderate-to-high heritability (0.36-0.82) and coefficient of genetic variation (0.15-0.45). A genome-wide association study was performed with the BLINK model, leading to the detection of 11 QTL associated with four root-related traits (one QTL was associated with the total number of roots, four were associated with the number of small roots (< 1 mm in diameter), two were associated with the number of medium-sized roots (1 mm < diameter < 2 mm), and four were associated with mean diameter) accounting for up to 25.1% of the variance. Three genotypes were found to have better root-related trait performances than the commercial rootstocks and therefore constitute possible new candidates for use in grapevine rootstock breeding programs.


Assuntos
Vitis , Humanos , Vitis/genética , Estudo de Associação Genômica Ampla , Raízes de Plantas/genética , Melhoramento Vegetal , Fenótipo
5.
Front Plant Sci ; 14: 1217589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731980

RESUMO

In modern plant breeding, genomic selection is becoming the gold standard for selection of superior genotypes. The basis for genomic prediction models is a set of phenotyped lines along with their genotypic profile. With high marker density and linkage disequilibrium (LD) between markers, genotype data in breeding populations tends to exhibit considerable redundancy. Therefore, interest is growing in the use of haplotype blocks to overcome redundancy by summarizing co-inherited features. Moreover, haplotype blocks can help to capture local epistasis caused by interacting loci. Here, we compared genomic prediction methods that either used single SNPs or haplotype blocks with regards to their prediction accuracy for important traits in crop datasets. We used four published datasets from canola, maize, wheat and soybean. Different approaches to construct haplotype blocks were compared, including blocks based on LD, physical distance, number of adjacent markers and the algorithms implemented in the software "Haploview" and "HaploBlocker". The tested prediction methods included Genomic Best Linear Unbiased Prediction (GBLUP), Extended GBLUP to account for additive by additive epistasis (EGBLUP), Bayesian LASSO and Reproducing Kernel Hilbert Space (RKHS) regression. We found improved prediction accuracy in some traits when using haplotype blocks compared to SNP-based predictions, however the magnitude of improvement was very trait- and model-specific. Especially in settings with low marker density, haplotype blocks can improve genomic prediction accuracy. In most cases, physically large haplotype blocks yielded a strong decrease in prediction accuracy. Especially when prediction accuracy varies greatly across different prediction models, prediction based on haplotype blocks can improve prediction accuracy of underperforming models. However, there is no "best" method to build haplotype blocks, since prediction accuracy varied considerably across methods and traits. Hence, criteria used to define haplotype blocks should not be viewed as fixed biological parameters, but rather as hyperparameters that need to be adjusted for every dataset.

6.
Evol Appl ; 16(6): 1184-1200, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37360024

RESUMO

In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V. berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V. berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome-environment association analysis (GEA). De novo long-read whole-genome sequencing was performed on V. berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks.

7.
Front Plant Sci ; 14: 1162506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998680

RESUMO

To sustainably adapt viticultural production to drought, the planting of rootstock genotypes adapted to a changing climate is a promising means. Rootstocks contribute to the regulation of scion vigor and water consumption, modulate scion phenological development and determine resource availability by root system architecture development. There is, however, a lack of knowledge on spatio-temporal root system development of rootstock genotypes and its interactions with environment and management that prevents efficient knowledge transfer into practice. Hence, winegrowers take only limited advantage of the large variability of existing rootstock genotypes. Models of vineyard water balance combined with root architectural models, using both static and dynamic representations of the root system, seem promising tools to match rootstock genotypes to frequently occurring future drought stress scenarios and address scientific knowledge gaps. In this perspective, we discuss how current developments in vineyard water balance modeling may provide the background for a better understanding of the interplay of rootstock genotypes, environment and management. We argue that root architecture traits are key drivers of this interplay, but our knowledge on rootstock architectures in the field remains limited both qualitatively and quantitatively. We propose phenotyping methods to help close current knowledge gaps and discuss approaches to integrate phenotyping data into different models to advance our understanding of rootstock x environment x management interactions and predict rootstock genotype performance in a changing climate. This could also provide a valuable basis for optimizing breeding efforts to develop new grapevine rootstock cultivars with optimal trait configurations for future growing conditions.

8.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36053200

RESUMO

Simulation tools are key to designing and optimizing breeding programs that are multiyear, high-effort endeavors. Tools that operate on real genotypes and integrate easily with other analysis software can guide users toward crossing decisions that best balance genetic gains and genetic diversity required to maintain gains in the future. Here, we present genomicSimulation, a fast and flexible tool for the stochastic simulation of crossing and selection based on real genotypes. It is fully written in C for high execution speeds, has minimal dependencies, and is available as an R package for the integration with R's broad range of analysis and visualization tools. Comparisons of a simulated recreation of a breeding program to a real data set demonstrate the simulated offspring from the tool correctly show key population features, such as genomic relationships and approximate linkage disequilibrium patterns. Both versions of genomicSimulation are freely available on GitHub: The R package version at https://github.com/vllrs/genomicSimulation/ and the C library version at https://github.com/vllrs/genomicSimulationC/.


Assuntos
Genômica , Software , Simulação por Computador , Genótipo
9.
Transl Anim Sci ; 6(2): txac035, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35529039

RESUMO

The northern Australia beef cattle industry operates in harsh environmental conditions which consistently suppress female fertility. To better understand the environmental effect on cattle raised extensively in northern Australia, new environmental descriptors were defined for 54 commercial herds located across the region. Three fertility traits, based on the presence of a corpus luteum at 600 d of age, indicating puberty, (CL Presence, n = 25,176), heifer pregnancy (n = 20,989) and first lactation pregnancy (n = 10,072) were recorded. Temperature, humidity, and rainfall were obtained from publicly available data based on herd location. Being pubertal at 600 d (i.e. CL Presence) increased the likelihood of success at heifer pregnancy and first lactation pregnancy (P < 0.05), underscoring the importance of early puberty in reproductive success. A temperature humidity index (THI) of 65-70 had a significant (P < 0.05) negative effect on first lactation pregnancy rate, heifer pregnancy and puberty at 600 d of age. Area under the curve of daily THI was significant (P < 0.05) and reduced the likelihood of pregnancy at first lactation and puberty at 600 days. Deviation from long-term average rainfall was not significant (P < 0.05) for any trait. Average daily weight gain had a significant and positive relationship (P < 0.05) for heifer and first lactation pregnancy. The results indicate that chronic or cumulative heat load is more determinantal to reproductive performance than acute heat stress. The reason for the lack of a clear relationship between acute heat stress and reproductive performance is unclear but may be partially explained by peak THI and peak nutrition coinciding at the same time. Sufficient evidence was found to justify the use of average daily weight gain and chronic heat load as descriptors to define an environmental gradient.

10.
Theor Appl Genet ; 135(4): 1355-1373, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35113190

RESUMO

KEY MESSAGE: Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.


Assuntos
Basidiomycota , Triticum , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética
11.
Plant Methods ; 18(1): 2, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012581

RESUMO

BACKGROUND: The incorporation of root traits into elite germplasm is typically a slow process. Thus, innovative approaches are required to accelerate research and pre-breeding programs targeting root traits to improve yield stability in different environments and soil types. Marker-assisted selection (MAS) can help to speed up the process by selecting key genes or quantitative trait loci (QTL) associated with root traits. However, this approach is limited due to the complex genetic control of root traits and the limited number of well-characterised large effect QTL. Coupling MAS with phenotyping could increase the reliability of selection. Here we present a useful framework to rapidly modify root traits in elite germplasm. In this wheat exemplar, a single plant selection (SPS) approach combined three main elements: phenotypic selection (in this case for seminal root angle); MAS using KASP markers (targeting a root biomass QTL); and speed breeding to accelerate each cycle. RESULTS: To develop a SPS approach that integrates non-destructive screening for seminal root angle and root biomass, two initial experiments were conducted. Firstly, we demonstrated that transplanting wheat seedlings from clear pots (for seminal root angle assessment) into sand pots (for root biomass assessment) did not impact the ability to differentiate genotypes with high and low root biomass. Secondly, we demonstrated that visual scores for root biomass were correlated with root dry weight (r = 0.72), indicating that single plants could be evaluated for root biomass in a non-destructive manner. To highlight the potential of the approach, we applied SPS in a backcrossing program which integrated MAS and speed breeding for the purpose of rapidly modifying the root system of elite bread wheat line Borlaug100. Bi-directional selection for root angle in segregating generations successfully shifted the mean root angle by 30° in the subsequent generation (P ≤ 0.05). Within 18 months, BC2F4:F5 introgression lines were developed that displayed a full range of root configurations, while retaining similar above-ground traits to the recurrent parent. Notably, the seminal root angle displayed by introgression lines varied more than 30° compared to the recurrent parent, resulting in lines with both narrow and wide root angles, and high and low root biomass phenotypes. CONCLUSION: The SPS approach enables researchers and plant breeders to rapidly manipulate root traits of future crop varieties, which could help improve productivity in the face of increasing environmental fluctuations. The newly developed elite wheat lines with modified root traits provide valuable materials to study the value of different root systems to support yield in different environments and soil types.

12.
BMC Genomics ; 22(1): 773, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715779

RESUMO

BACKGROUND: High-density SNP arrays are now available for a wide range of crop species. Despite the development of many tools for generating genetic maps, the genome position of many SNPs from these arrays is unknown. Here we propose a linkage disequilibrium (LD)-based algorithm to allocate unassigned SNPs to chromosome regions from sparse genetic maps. This algorithm was tested on sugarcane, wheat, and barley data sets. We calculated the algorithm's efficiency by masking SNPs with known locations, then assigning their position to the map with the algorithm, and finally comparing the assigned and true positions. RESULTS: In the 20-fold cross-validation, the mean proportion of masked mapped SNPs that were placed by the algorithm to a chromosome was 89.53, 94.25, and 97.23% for sugarcane, wheat, and barley, respectively. Of the markers that were placed in the genome, 98.73, 96.45 and 98.53% of the SNPs were positioned on the correct chromosome. The mean correlations between known and new estimated SNP positions were 0.97, 0.98, and 0.97 for sugarcane, wheat, and barley. The LD-based algorithm was used to assign 5920 out of 21,251 unpositioned markers to the current Q208 sugarcane genetic map, representing the highest density genetic map for this species to date. CONCLUSIONS: Our LD-based approach can be used to accurately assign unpositioned SNPs to existing genetic maps, improving genome-wide association studies and genomic prediction in crop species with fragmented and incomplete genome assemblies. This approach will facilitate genomic-assisted breeding for many orphan crops that lack genetic and genomic resources.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Ligação Genética , Genótipo , Desequilíbrio de Ligação , Melhoramento Vegetal
13.
Front Plant Sci ; 12: 663565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149761

RESUMO

Genomic prediction of complex traits across environments, breeding cycles, and populations remains a challenge for plant breeding. A potential explanation for this is that underlying non-additive genetic (GxG) and genotype-by-environment (GxE) interactions generate allele substitution effects that are non-stationary across different contexts. Such non-stationary effects of alleles are either ignored or assumed to be implicitly captured by most gene-to-phenotype (G2P) maps used in genomic prediction. The implicit capture of non-stationary effects of alleles requires the G2P map to be re-estimated across different contexts. We discuss the development and application of hierarchical G2P maps that explicitly capture non-stationary effects of alleles and have successfully increased short-term prediction accuracy in plant breeding. These hierarchical G2P maps achieve increases in prediction accuracy by allowing intermediate processes such as other traits and environmental factors and their interactions to contribute to complex trait variation. However, long-term prediction remains a challenge. The plant breeding community should undertake complementary simulation and empirical experiments to interrogate various hierarchical G2P maps that connect GxG and GxE interactions simultaneously. The existing genetic correlation framework can be used to assess the magnitude of non-stationary effects of alleles and the predictive ability of these hierarchical G2P maps in long-term, multi-context genomic predictions of complex traits in plant breeding.

14.
Theor Appl Genet ; 134(9): 2823-2839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34061222

RESUMO

KEY MESSAGE: QTL mapping identified key genomic regions associated with adult-plant resistance to tan spot, which are effective even in the presence of the sensitivity gene Tsn1, thus serving as a new genetic solution to develop disease-resistant wheat cultivars. Improving resistance to tan spot (Pyrenophora tritici-repentis; Ptr) in wheat by eliminating race-specific susceptibility genes is a common breeding approach worldwide. The potential to exploit variation in quantitative forms of resistance, such as adult-plant resistance (APR), offers an alternative approach that could lead to broad-spectrum protection. We previously identified wheat landraces in the Vavilov diversity panel that exhibited high levels of APR despite carrying the sensitivity gene Tsn1. In this study, we characterised the genetic control of APR by developing a recombinant inbred line population fixed for Tsn1, but segregating for the APR trait. Linkage mapping using DArTseq markers and disease response phenotypes identified a QTL associated with APR to Ptr race 1 (producing Ptr ToxA- and Ptr ToxC) on chromosome 2B (Qts.313-2B), which was consistently detected in multiple adult-plant experiments. Additional loci were also detected on chromosomes 2A, 3D, 5A, 5D, 6A, 6B and 7A at the seedling stage, and on chromosomes 1A and 5B at the adult stage. We demonstrate that Qts.313-2B can be combined with other adult-plant QTL (i.e. Qts.313-1A and Qts.313-5B) to strengthen resistance levels. The APR QTL reported in this study provide a new genetic solution to tan spot in Australia and could be deployed in wheat cultivars, even in the presence of Tsn1, to decrease production losses and reduce the application of fungicides.


Assuntos
Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
15.
Theor Appl Genet ; 134(6): 1645-1662, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33900415

RESUMO

In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the 'hidden half' of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.


Assuntos
Mudança Climática , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Triticum/genética , Produtos Agrícolas/genética , Genes de Plantas , Fenótipo , Raízes de Plantas/genética , Triticum/fisiologia
16.
Theor Appl Genet ; 134(7): 2235-2252, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33903985

RESUMO

KEY MESSAGE: Non-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance. In the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.


Assuntos
Genômica , Modelos Genéticos , Saccharum/genética , Variação Genética , Genótipo , Fenótipo , Melhoramento Vegetal
17.
Theor Appl Genet ; 134(5): 1545-1555, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677638

RESUMO

KEY MESSAGE: Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions in combination with co-expression analysis reveal candidate genes affecting oil accumulation in Brassica napus. One of the breeding goals in rapeseed production is to enhance the seed oil content to cater to the increased demand for vegetable oils due to a growing global population. To investigate the genetic basis of variation in seed oil content, we used 60 K Brassica Infinium SNP array along with phenotype data of 203 Chinese semi-winter rapeseed accessions to perform a genome-wide analysis of haplotype blocks associated with the oil content. Nine haplotype regions harbouring lipid synthesis/transport-, carbohydrate metabolism- and photosynthesis-related genes were identified as significantly associated with the oil content and were mapped to chromosomes A02, A04, A05, A07, C03, C04, C05, C08 and C09, respectively. Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions combined with transcriptome datasets from 13 accessions was further performed on these nine haplotype regions. This revealed natural variation in the BnTGD3-A02 and BnSSE1-A05 gene regions correlated with the phenotypic variation of the oil content within the A02 and A04 chromosome haplotype regions, respectively. Moreover, co-expression network analysis revealed that BnTGD3-A02 and BnSSE1-A05 were directly linked with fatty acid beta-oxidation-related gene BnKAT2-C04, thus forming a molecular network involved in the potential regulation of seed oil accumulation. The results of this study could be used to combine favourable haplotype alleles for further improvement of the seed oil content in rapeseed.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal/métodos , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
18.
Theor Appl Genet ; 134(6): 1625-1644, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738512

RESUMO

KEY MESSAGE: Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is "How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?" Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype-Management (G-M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G-M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G-M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G-M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.


Assuntos
Agricultura/métodos , Produtos Agrícolas/genética , Interação Gene-Ambiente , Melhoramento Vegetal , Mudança Climática , Fazendas , Genótipo
19.
Theor Appl Genet ; 134(5): 1455-1462, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33590303

RESUMO

KEY MESSAGE: Complex traits in sugarcane can be accurately predicted using genome-wide DNA markers. Genomic single-step prediction is an attractive method for genomic selection in commercial breeding programs. Sugarcane breeding programs have achieved up to 1% genetic gain in key traits such as tonnes of cane per hectare (TCH), commercial cane sugar (CCS) and Fibre content over the past decades. Here, we assess the potential of genomic selection to increase the rate of genetic gain for these traits by deriving genomic estimated breeding values (GEBVs) from a reference population of 3984 clones genotyped for 26 K SNP. We evaluated the three different genomic prediction approaches GBLUP, genomic single step (GenomicSS), and BayesR. GenomicSS combining pedigree and SNP information from historic and recent breeding programs achieved the most accurate predictions for most traits (0.3-0.44). This method is attractive for routine genetic evaluation because it requires relatively little modification to the existing evaluation and results in breeding value estimates for all individuals, not only those genotyped. Adding information from early-stage trials added up to 5% accuracy for CCS and Fibre, but 0% for TCH, reflecting the importance of competition effects for TCH. These GEBV accuracies are sufficiently high that, combined with the right breeding strategy, a doubling of the rate of genetic gain could be achieved. We also assessed the flowering traits days to flowering, gender and pollen viability and found high heritabilities of 0.57, 0.78 and 0.72, respectively. The GEBV accuracies indicated that genomic selection could be used to improve these traits. This could open new avenues for breeders to manage their breeding programs, for example, by synchronising flowering time and selecting males with high pollen viability.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Herança Multifatorial , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Saccharum/genética , Mapeamento Cromossômico/métodos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genética Populacional , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo
20.
Theor Appl Genet ; 134(5): 1493-1511, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33587151

RESUMO

KEY MESSAGE: Simulations highlight the potential of genomic selection to substantially increase genetic gain for complex traits in sugarcane. The success rate depends on the trait genetic architecture and the implementation strategy. Genomic selection (GS) has the potential to increase the rate of genetic gain in sugarcane beyond the levels achieved by conventional phenotypic selection (PS). To assess different implementation strategies, we simulated two different GS-based breeding strategies and compared genetic gain and genetic variance over five breeding cycles to standard PS. GS scheme 1 followed similar routines like conventional PS but included three rapid recurrent genomic selection (RRGS) steps. GS scheme 2 also included three RRGS steps but did not include a progeny assessment stage and therefore differed more fundamentally from PS. Under an additive trait model, both simulated GS schemes achieved annual genetic gains of 2.6-2.7% which were 1.9 times higher compared to standard phenotypic selection (1.4%). For a complex non-additive trait model, the expected annual rates of genetic gain were lower for all breeding schemes; however, the rates for the GS schemes (1.5-1.6%) were still greater than PS (1.1%). Investigating cost-benefit ratios with regard to numbers of genotyped clones showed that substantial benefits could be achieved when only 1500 clones were genotyped per 10-year breeding cycle for the additive genetic model. Our results show that under a complex non-additive genetic model, the success rate of GS depends on the implementation strategy, the number of genotyped clones and the stage of the breeding program, likely reflecting how changes in QTL allele frequencies change additive genetic variance and therefore the efficiency of selection. These results are encouraging and motivate further work to facilitate the adoption of GS in sugarcane breeding.


Assuntos
Genoma de Planta , Genômica/métodos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Saccharum/genética , Seleção Genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genética Populacional , Modelos Genéticos , Fenótipo , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...