Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166563

RESUMO

BACKGROUND: Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS: In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION: We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.


Assuntos
Genoma , Genômica , Anotação de Sequência Molecular
2.
Ecol Evol ; 10(23): 13427-13438, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304549

RESUMO

The geographic and biological diversity of China has resulted in the differential adaptation of the eastern honeybee, Apis cerana, to these varied habitats. A. cerana were collected from 14 locations in China. Their genomes were sequenced, and nucleotide polymorphisms were identified at more than 9 million sites. Both STRUCTURE and principal component analysis placed the bees into seven groups. Phylogenomic analysis groups the honeybees into many of the same clusters with high bootstrap values (91%-100%). Populations from Tibet and South Yunnan are sister taxa and together represent the earliest diverging lineage included in this study. We propose that the evolutionary origin of A. cerana in China was in the southern region of Yunnan Province and expanded from there into the southeastern regions and into the northeastern mountain regions. The Cold-Temperate West Sichuan Plateau and Tropical Diannan populations were compared to identify genes under adaptive selection in these two habitats. Pathway enrichment analysis showing genes under selection, including the Hippo signaling pathway, GABAergic pathway, and trehalose-phosphate synthase, indicates that most genes under selection pressure are involved in the process of signal transduction and energy metabolism. qRT-PCR analysis reveals that one gene under selection, the AcVIAAT gene, involved in the GABAergic pathway, is responding to cold temperature stress. Through homologous recombination, we show that the AcVIAAT gene is able to replace the CNAG_01904 gene in the fungus Cryptococcus neoformans and that it makes the fungus less sensitive to conditions of oxidative stress and variations in temperature. Our results contribute to our understanding of the evolutionary origin of A. cerana in China and the molecular basis of environmental adaptation.

3.
J Eukaryot Microbiol ; 65(1): 93-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28691191

RESUMO

Manganese superoxide dismutase (MnSOD) is a key enzyme in the protection of cells from oxidative stress. A tandem duplication of the MnSOD gene (NbMnSOD1 and NbMnSOD2) in the genome of Nosema bombycis, a parasite of the silkworm Bombyx mori, was previously identified. Here, we compare the protein structures of NbMnSOD1 and NbMnSOD2 and characterize these two proteins in terms of cellular localization, timing of transcription, protein structure, and enzyme activity. Despite a similarity in the primary sequence of NbMnSOD1 and NbMnSOD2, the latter shows a remarkable degree of amino acid sequence difference on the protein's surface and in the active site, where there is a substitution of a phenylalanine for a histidine in NbMnSOD2. Immuno-electron microscopy demonstrates that NbMnSOD1 is present in the cytosol of mature spores, whereas NbMnSOD2 is localized on the polar tube and the spore wall. Immunofluorescence confirms the localization of NbMnSOD2 on the polar tube of the germinated spore. Quantitative measurement of gene expression (qRT-PCR) demonstrates production of both alleles during the first day of infection followed by a dramatic decrease during the second to fourth day of infection. From the fifth day onward, the two alleles show a complementary pattern of expression. The qRT-PCR of the host manganese superoxide dismutase (BmMnSOD) shows a notable increase in transcription upon infection, leading to a three-fold spike by the first day of infection, followed by a decrease in transcription. Measurement of overall MnSOD activity shows a similar peak at day 1 followed by a decrease to a constant rate of enzyme activity. The differences in cellular localization and pattern of gene expression of NbMnSOD2 compared to NbMnSOD1, as well as the differences in protein structure seen for NbMnSOD2 compared to other microsporidial MnSODs, strongly suggest a unique, recently evolved role for NbMnSOD2.


Assuntos
Evolução Molecular , Proteínas Fúngicas/genética , Duplicação Gênica , Nosema/genética , Estresse Oxidativo , Superóxido Dismutase/genética , Proteínas Fúngicas/metabolismo , Nosema/enzimologia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Superóxido Dismutase/metabolismo
4.
Database (Oxford) ; 2017(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365723

RESUMO

Silkworm pathogens have been heavily impeding the development of sericultural industry and play important roles in lepidopteran ecology, and some of which are used as biological insecticides. Rapid advances in studies on the omics of silkworm pathogens have produced a large amount of data, which need to be brought together centrally in a coherent and systematic manner. This will facilitate the reuse of these data for further analysis. We have collected genomic data for 86 silkworm pathogens from 4 taxa (fungi, microsporidia, bacteria and viruses) and from 4 lepidopteran hosts, and developed the open-access Silkworm Pathogen Database (SilkPathDB) to make this information readily available. The implementation of SilkPathDB involves integrating Drupal and GBrowse as a graphic interface for a Chado relational database which houses all of the datasets involved. The genomes have been assembled and annotated for comparative purposes and allow the search and analysis of homologous sequences, transposable elements, protein subcellular locations, including secreted proteins, and gene ontology. We believe that the SilkPathDB will aid researchers in the identification of silkworm parasites, understanding the mechanisms of silkworm infections, and the developmental ecology of silkworm parasites (gene expression) and their hosts. Database URL: http://silkpathdb.swu.edu.cn.


Assuntos
Bactérias/genética , Bombyx/genética , Bombyx/microbiologia , Bases de Dados Genéticas , Fungos/genética , Genoma , Vírus de Insetos/genética , Microsporídios/genética , Animais
5.
PLoS One ; 11(9): e0162336, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598992

RESUMO

The microsporidian parasite designated here as Nosema sp. Isolate YNPr was isolated from the cabbage butterfly Pieris rapae collected in Honghe Prefecture, Yunnan Province, China. The genome was sequenced by Illumina sequencing and compared to those of two related members of the Nosema/Vairimorpha clade, Nosema ceranae and Nosema apis. Based upon assembly statistics, the Nosema sp. YNPr genome is 3.36 x 106bp with a G+C content of 23.18% and 2,075 protein coding sequences. An "ACCCTT" motif is present approximately 50-bp upstream of the start codon, as reported from other members of the clade and from Encephalitozoon cuniculi, a sister taxon. Comparative small subunit ribosomal DNA (SSU rDNA) analysis as well as genome-wide phylogenetic analysis confirms a closer relationship between N. ceranae and Nosema sp. YNPr than between the two honeybee parasites N. ceranae and N. apis. The more closely related N. ceranae and Nosema sp. YNPr show similarities in a number of structural characteristics such as gene synteny, gene length, gene number, transposon composition and gene reduction. Based on transposable element content of the assemblies, the transposon content of Nosema sp. YNPr is 4.8%, that of N. ceranae is 3.7%, and that of N. apis is 2.5%, with large differences in the types of transposons present among these 3 species. Gene function annotation indicates that the number of genes participating in most metabolic activities is similar in all three species. However, the number of genes in the transcription, general function, and cysteine protease categories is greater in N. apis than in the other two species. Our studies further characterize the evolution of the Nosema/Vairimorpha clade of microsporidia. These organisms maintain variable but very reduced genomes. We are interested in understanding the effects of genetic drift versus natural selection on genome size in the microsporidia and in developing a testable hypothesis for further studies on the genomic ecology of this group.


Assuntos
DNA Fúngico/genética , DNA Ribossômico/genética , Genoma Fúngico , Microsporídios/genética , Nosema/genética , Animais , Composição de Bases , Sequência de Bases , Abelhas/microbiologia , Evolução Biológica , Borboletas/microbiologia , Elementos de DNA Transponíveis , Ontologia Genética , Deriva Genética , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Microsporídios/classificação , Anotação de Sequência Molecular , Nosema/classificação , Alinhamento de Sequência , Especificidade da Espécie , Sintenia
6.
J Invertebr Pathol ; 113(1): 63-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23399511

RESUMO

The microsporidian Nosema bombycis is the causative agent of pébrine, a highly infectious disease of the silkworm Bombyx mori. Three regions of the multicopy rDNA gene were examined in order to investigate the relationships among five Nosema isolates from various regions of China. Ribosomal DNA alleles are present on each of the 18 chromosomes of N. bombycis and show a high degree of variation. In this study the small subunit (SSU) rDNA, internal transcribed spacer (ITS) and intergenic spacer (IGS) regions for up to 10 different rDNA copies from each N. bombycis isolate were cloned and sequenced. As expected we see greater polymorphism in the ITS region (88 variable sites in 179 nucleotides) and IGS (200 variable sites in 279 nucleotides) than in the SSU rDNA (24 variable sites in 1232 nucleotides). Phylogenetic analysis shows greater differences between alleles within an isolate than between the same alleles from different isolates. The data reveal two very different groups, one from the Sichuan province and the other with a broad distribution including four provinces in southeast China and Japan. The Sichuan isolate does not have any rDNA alleles with sequences identical to those in the other isolates, implying that it is a separate, non-intermixing, population or perhaps a separate species from the other isolates. In light of the polymorphic nature of the rDNA alleles in N. bombycis and their presence on every chromosome, the rDNA gene may be useful for understanding the movement and ultimately the source of pébrine infections.


Assuntos
DNA Ribossômico/química , Nosema/genética , Polimorfismo Genético , Animais , Sequência de Bases , Bombyx/microbiologia , China , Geografia , Dados de Sequência Molecular , Nosema/isolamento & purificação , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Folia Parasitol (Praha) ; 52(1-2): 131-42; discussion 130, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16004372

RESUMO

The Microsporidia are a group of obligate intracellular parasites, now thought to be derived fungi. Presented here is a comparative small subunit rDNA (ssrDNA) analysis of 125 species of Microsporidia (sequences obtained from GenBank). This analysis shows that groups or clades are formed based largely on habitat and host. This result is supported by comparative molecular analyses of the past decade, and indicates that structural and ultrastructural characters are unreliable for distinguishing among higher-level microsporidian taxa. Our findings indicate the presence of five major clades of Microsporidia which group according to habitat. We present three new classes of Microsporidia based on natural phylogenetic groupings as illustrated by the ssrDNA analysis: Aquasporidia, Marinosporidia and Terresporidia. The names of the proposed classes reflect the habitat of each group. The class Aquasporidia, found primarily in freshwater habitats, is a paraphyletic group consisting of three clades. The Marinosporidia are found in hosts of marine origin and the Terresporidia are primarily from terrestrial environments.


Assuntos
Meio Ambiente , Microsporídios/genética , Filogenia , Animais , Análise por Conglomerados , Bases de Dados de Ácidos Nucleicos , Microsporídios/classificação , RNA Ribossômico/genética
8.
Genome Res ; 13(2): 294-307, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12566408

RESUMO

Structural genetic alterations in cancer often involve gene loss or gene amplification. With the advent of microarray approaches for the analysis of the genome, as exemplified by array-CGH (Comparative Genomic Hybridization), scanning for gene-dosage alterations is limited only by issues of DNA microarray density. However, samples of interest to the pathologist often comprise small clusters of just a few hundred cells, which do not provide sufficient DNA for array-CGH analysis. We sought to develop a simple method that would permit amplification of the whole genome without the use of thermocycling or ligation of DNA adaptors, because such a method would lend itself to the automated processing of a large number of tissue samples. We describe a method that permits the isothermal amplification of genomic DNA with high fidelity and limited sequence representation bias. The method is based on strand displacement reactions that propagate by a hyperbranching mechanism, and generate hundreds, or even thousands, of copies of the genome in a few hours. Using whole genome isothermal amplification, in combination with comparative genomic hybridization on cDNA microarrays, we demonstrate the ability to detect gene losses in yeast and gene dosage imbalances in human breast tumor cell lines. Although sequence representation bias in the amplified DNA presents potential problems for CGH analysis, these problems have been overcome by using amplified DNA in both control and tester samples. Gene-dosage alterations of threefold or more can be observed with high reproducibility with as few as 1000 cells of starting material.


Assuntos
DNA/análise , Genoma , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , DNA/genética , DNA Complementar/genética , DNA Fúngico/análise , DNA Fúngico/genética , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos/genética , Genoma Fúngico , Humanos , Linfócitos/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Poliploidia , Saccharomyces cerevisiae/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...