Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428428

RESUMO

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/diagnóstico , Antioxidantes/uso terapêutico , Ubiquinona/uso terapêutico , Ubiquinona/genética , Mutação
3.
J Inherit Metab Dis ; 45(4): 796-803, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35543492

RESUMO

Primary mitochondrial disorders encompass a wide range of clinical presentations and a spectrum of severity. They currently lack effective disease-modifying therapies and have a high mortality and morbidity rate. It is therefore essential to know that competitively funded research designed by academics meets the core needs of people with mitochondrial disorders and their clinicians. Priority setting partnerships are an established collaborative methodology that brings patients, carers and families, charity representatives and clinicians together to try to establish the most pressing and unanswered research priorities for a particular disease. We developed a web-based questionnaire, requesting all patients affected by primary mitochondrial disease, their carers and clinicians to pose their research questions. This yielded 709 questions from 147 participants. These were grouped into overarching themes including basic biology, causation, health services, clinical management, social impacts, prognosis, prevention, symptoms, treatment and psychological impact. Following the removal of "answered questions", the process resulted in a list of 42 discrete, answerable questions. This was further refined by web-based ranking by the community to 24 questions. These were debated at a face-to-face workshop attended by a diverse range of patients, carers, charity representatives and clinicians to create a definitive "Top 10 of unanswered research questions for primary mitochondrial disorders". These Top 10 questions related to understanding biological processes, including triggers of disease onset, mechanisms underlying progression and reasons for differential symptoms between individuals with identical genetic mutations; new treatments; biomarker discovery; psychological support and optimal management of stroke-like episodes and fatigue.


Assuntos
Pesquisa Biomédica , Doenças Mitocondriais , Cuidadores , Prioridades em Saúde , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Inquéritos e Questionários
4.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445085

RESUMO

Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13-15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/-) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/- retinas. Immunohistochemistry revealed that aged Opa1+/- RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/- RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.


Assuntos
Atrofia Óptica Autossômica Dominante/terapia , Fototerapia , Proteína Desglicase DJ-1/análise , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/efeitos da radiação , Animais , Modelos Animais de Doenças , Luz , Camundongos , Neuroproteção/efeitos da radiação , Atrofia Óptica Autossômica Dominante/patologia , Degeneração Retiniana , Células Ganglionares da Retina/citologia , Regulação para Cima/efeitos da radiação
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072974

RESUMO

This study investigates whether reduced optic atrophy 1 (Opa1) level promotes apoptosis and retinal vascular lesions associated with diabetic retinopathy (DR). Four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, Opa1+/- mice, and diabetic Opa1+/- mice were used in this study. 16 weeks after diabetes onset, retinas were assessed for Opa1 and Bax levels by Western blot analysis, and retinal networks were examined for acellular capillaries (AC) and pericyte loss (PL). Apoptotic cells were detected in retinal capillaries using TUNEL assay, and caspase-3 activity was assessed using fluorometric analysis. Opa1 expression was significantly downregulated in retinas of diabetic and Opa1+/- mice compared with those of WT mice. Inducing diabetes further decreased Opa1 expression in retinas of Opa1+/- mice. Increased cytochrome c release concomitant with increased level of pro-apoptotic Bax and elevated caspase-3 activity were observed in retinas of diabetic and Opa1+/- mice; the number of TUNEL-positive cells and AC/PL was also significantly increased. An additional decrease in the Opa1 level in retinas of diabetic Opa1+/- mice exacerbated the development of apoptotic cells and AC/PL compared with those of diabetic mice. Diabetes-induced Opa1 downregulation contributes, at least in part, to the development of retinal vascular lesions characteristic of DR.


Assuntos
Capilares , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , GTP Fosfo-Hidrolases/fisiologia , Vasos Retinianos , Animais , Apoptose , Capilares/metabolismo , Capilares/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
6.
Redox Biol ; 43: 101988, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932867

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Humanos , Neuroproteção , Niacinamida , Células Ganglionares da Retina
7.
Front Neurol ; 12: 641259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927681

RESUMO

Autosomal Dominant Optic Atrophy (ADOA) is an ophthalmological condition associated primarily with mutations in the OPA1 gene. It has variable onset, sometimes juvenile, but in other patients, the disease does not manifest until adult middle age despite the presence of a pathological mutation. Thus, individuals carrying mutations are considered healthy before the onset of clinical symptoms. Our research, nonetheless, indicates that on the cellular level pathology is evident from birth and mutant cells are different from controls. We argue that the adaptation and early recruitment of cytoprotective responses allows normal development and functioning but leads to an exhaustion of cellular reserves, leading to premature cellular aging, especially in neurons and skeletal muscle cells. The appearance of clinical symptoms, thus, indicates the overwhelming of natural cellular defenses and break-down of native protective mechanisms.

8.
Ther Adv Rare Dis ; 2: 26330040211029037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37181108

RESUMO

Mitochondrial optic neuropathies are a group of optic nerve atrophies exemplified by the two commonest conditions in this group, autosomal dominant optic atrophy (ADOA) and Leber's hereditary optic neuropathy (LHON). Their clinical features comprise reduced visual acuity, colour vision deficits, centro-caecal scotomas and optic disc pallor with thinning of the retinal nerve fibre layer. The primary aetiology is genetic, with underlying nuclear or mitochondrial gene mutations. The primary pathology is owing to retinal ganglion cell dysfunction and degeneration. There is currently only one approved treatment and no curative therapy is available. In this review we summarise the genetic and clinical features of ADOA and LHON and then examine what new avenues there may be for therapeutic intervention. The therapeutic strategies to manage LHON and ADOA can be split into four categories: prevention, compensation, replacement and repair. Prevention is technically an option by modifying risk factors such as smoking cessation, or by utilising pre-implantation genetic diagnosis, although this is unlikely to be applied in mitochondrial optic neuropathies due to the non-life threatening and variable nature of these conditions. Compensation involves pharmacological interventions that ameliorate the mitochondrial dysfunction at a cellular and tissue level. Replacement and repair are exciting new emerging areas. Clinical trials, both published and underway, in this area are likely to reveal future potential benefits, since new therapies are desperately needed. Plain language summary: Optic nerve damage leading to loss of vision can be caused by a variety of insults. One group of conditions leading to optic nerve damage is caused by defects in genes that are essential for cells to make energy in small organelles called mitochondria. These conditions are known as mitochondrial optic neuropathies and two predominant examples are called autosomal dominant optic atrophy and Leber's hereditary optic neuropathy. Both conditions are caused by problems with the energy powerhouse of cells: mitochondria. The cells that are most vulnerable to this mitochondrial malfunction are called retinal ganglion cells, otherwise collectively known as the optic nerve, and they take the electrical impulse from the retina in the eye to the brain. The malfunction leads to death of some of the optic nerve cells, the degree of vision loss being linked to the number of those cells which are impacted in this way. Patients will lose visual acuity and colour vision and develop a central blind spot in their field of vision. There is currently no cure and very few treatment options. New treatments are desperately needed for patients affected by these devastating diseases. New treatments can potentially arise in four ways: prevention, compensation, replacement and repair of the defects. Here we explore how present and possible future treatments might provide hope for those suffering from these conditions.

9.
J Med Chem ; 63(22): 13638-13655, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180495

RESUMO

Leber's hereditary optic neuropathy (LHON) is a rare genetic mitochondrial disease and the primary cause of chronic visual impairment for at least 1 in 10 000 individuals in the U.K. Treatment options remain limited, with only a few drug candidates and therapeutic approaches, either approved or in development. Recently, idebenone has been investigated as drug therapy in the treatment of LHON, although evidence for the efficacy of idebenone is limited in the literature. NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III were identified as the major enzymes involved in idebenone activity. Based on this mode of action, computer-aided techniques and structure-activity relationship (SAR) optimization studies led to the discovery of a series naphthoquinone-related small molecules, with comparable adenosine 5'-triphosphate (ATP) rescue activity to idebenone. Among these, three compounds showed activity in the nanomolar range and one, 2-((4-fluoro-3-(trifluoromethyl)phenyl)amino)-3-(methylthio)naphthalene-1,3-dione (1), demonstrated significantly higher potency ex vivo, and significantly lower cytotoxicity, than idebenone.


Assuntos
Naftoquinonas/química , Naftoquinonas/uso terapêutico , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular/métodos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Atrofia Óptica Hereditária de Leber/patologia , Preparações Farmacêuticas , Resultado do Tratamento
10.
Brain Commun ; 2(2): fcaa101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094281

RESUMO

A healthy mitochondrial network is essential for the maintenance of neuronal synaptic integrity. Mitochondrial and metabolic dysfunction contributes to the pathogenesis of many neurodegenerative diseases including dementia. OPA1 is the master regulator of mitochondrial fusion and fission and is likely to play an important role during neurodegenerative events. To explore this, we quantified hippocampal dendritic and synaptic integrity and the learning and memory performance of aged Opa1 haploinsufficient mice carrying the Opa1Q285X mutation (B6; C3-Opa1Q285STOP ; Opa1+/- ). We demonstrate that heterozygous loss of Opa1 results in premature age-related loss of spines in hippocampal pyramidal CA1 neurons and a reduction in synaptic density in the hippocampus. This loss is associated with subtle memory deficits in both spatial novelty and object recognition. We hypothesize that metabolic failure to maintain normal neuronal activity at the level of a single spine leads to premature age-related memory deficits. These results highlight the importance of mitochondrial homeostasis for maintenance of neuronal function during ageing.

11.
J Neuroophthalmol ; 40(4): 558-565, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991388

RESUMO

BACKGROUND: Leber hereditary optic neuropathy (LHON) leads to bilateral central vision loss. In a clinical trial setting, idebenone has been shown to be safe and to provide a trend toward improved visual acuity, but long-term evidence of effectiveness in real-world clinical practice is sparse. METHODS: Open-label, multicenter, retrospective, noncontrolled analysis of long-term visual acuity and safety in 111 LHON patients treated with idebenone (900 mg/day) in an expanded access program. Eligible patients had a confirmed mitochondrial DNA mutation and had experienced the onset of symptoms (most recent eye) within 1 year before enrollment. Data on visual acuity and adverse events were collected as per normal clinical practice. Efficacy was assessed as the proportion of patients with either a clinically relevant recovery (CRR) or a clinically relevant stabilization (CRS) of visual acuity. In the case of CRR, time to and magnitude of recovery over the course of time were also assessed. RESULTS: At time of analysis, 87 patients had provided longitudinal efficacy data. Average treatment duration was 25.6 months. CRR was observed in 46.0% of patients. Analysis of treatment effect by duration showed that the proportion of patients with recovery and the magnitude of recovery increased with treatment duration. Average gain in best-corrected visual acuity for responders was 0.72 logarithm of the minimal angle of resolution (logMAR), equivalent to more than 7 lines on the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. Furthermore, 50% of patients who had a visual acuity below 1.0 logMAR in at least one eye at initiation of treatment successfully maintained their vision below this threshold by last observation. Idebenone was well tolerated, with most adverse events classified as minor. CONCLUSIONS: These data demonstrate the benefit of idebenone treatment in recovering lost vision and maintaining good residual vision in a real-world setting. Together, these findings indicate that idebenone treatment should be initiated early and be maintained more than 24 months to maximize efficacy. Safety results were consistent with the known safety profile of idebenone.


Assuntos
Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Ubiquinona/análogos & derivados , Acuidade Visual , Adolescente , Adulto , Idoso , Antioxidantes/uso terapêutico , Criança , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Óptica Hereditária de Leber/fisiopatologia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Ubiquinona/uso terapêutico , Adulto Jovem
12.
Nutrients ; 12(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961812

RESUMO

Glaucoma and age-related macular degeneration are leading causes of irreversible blindness worldwide with significant health and societal burdens. To date, no clinical cures are available and treatments target only the manageable symptoms and risk factors (but do not remediate the underlying pathology of the disease). Both diseases are neurodegenerative in their pathology of the retina and as such many of the events that trigger cell dysfunction, degeneration, and eventual loss are due to mitochondrial dysfunction, inflammation, and oxidative stress. Here, we critically review how a decreased bioavailability of nicotinamide adenine dinucleotide (NAD; a crucial metabolite in healthy and disease states) may underpin many of these aberrant mechanisms. We propose how exogenous sources of NAD may become a therapeutic standard for the treatment of these conditions.


Assuntos
Glaucoma/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , NAD/uso terapêutico , Suplementos Nutricionais , Humanos , NAD/administração & dosagem
13.
Neurol Genet ; 6(3): e428, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32548275

RESUMO

OBJECTIVE: To improve the genetic diagnosis of dominant optic atrophy (DOA), the most frequently inherited optic nerve disease, and infer genotype-phenotype correlations. METHODS: Exonic sequences of 22 genes were screened by new-generation sequencing in patients with DOA who were investigated for ophthalmology, neurology, and brain MRI. RESULTS: We identified 7 and 8 new heterozygous pathogenic variants in SPG7 and AFG3L2. Both genes encode for mitochondrial matricial AAA (m-AAA) proteases, initially involved in recessive hereditary spastic paraplegia type 7 (HSP7) and dominant spinocerebellar ataxia 28 (SCA28), respectively. Notably, variants in AFG3L2 that result in DOA are located in different domains to those reported in SCA28, which likely explains the lack of clinical overlap between these 2 phenotypic manifestations. In comparison, the SPG7 variants identified in DOA are interspersed among those responsible for HSP7 in which optic neuropathy has previously been reported. CONCLUSIONS: Our results position SPG7 and AFG3L2 as candidate genes to be screened in DOA and indicate that regulation of mitochondrial protein homeostasis and maturation by m-AAA proteases are crucial for the maintenance of optic nerve physiology.

14.
Proc Natl Acad Sci U S A ; 117(27): 15684-15693, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571921

RESUMO

Mitochondria are known to play an essential role in photoreceptor function and survival that enables normal vision. Within photoreceptors, mitochondria are elongated and extend most of the inner-segment length, where they supply energy for protein synthesis and the phototransduction machinery in the outer segment, as well as acting as a calcium store. Here, we examined the arrangement of the mitochondria within the inner segment in detail using three-dimensional (3D) electron microscopy techniques and show they are tethered to the plasma membrane in a highly specialized arrangement. Remarkably, mitochondria and their cristae openings align with those of neighboring inner segments. The pathway by which photoreceptors meet their high energy demands is not fully understood. We propose this to be a mechanism to share metabolites and assist in maintaining homeostasis across the photoreceptor cell layer. In the extracellular space between photoreceptors, Müller glial processes were identified. Due to the often close proximity to the inner-segment mitochondria, they may, too, play a role in the inner-segment mitochondrial arrangement as well as metabolite shuttling. OPA1 is an important factor in mitochondrial homeostasis, including cristae remodeling; therefore, we examined the photoreceptors of a heterozygous Opa1 knockout mouse model. The cristae structure in the Opa1+/- photoreceptors was not greatly affected, but the mitochondria were enlarged and had reduced alignment to neighboring inner-segment mitochondria. This indicates the importance of key regulators in maintaining this specialized photoreceptor mitochondrial arrangement.


Assuntos
GTP Fosfo-Hidrolases/genética , Mitocôndrias/genética , Membranas Mitocondriais/ultraestrutura , Visão Ocular/genética , Animais , Membrana Celular/genética , Membrana Celular/ultraestrutura , Células Ependimogliais/metabolismo , Células Ependimogliais/ultraestrutura , Humanos , Camundongos , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Células Fotorreceptoras/ultraestrutura , Visão Ocular/fisiologia
15.
Invest Ophthalmol Vis Sci ; 61(6): 42, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32561926

RESUMO

Purpose: Retinal ganglion cells (RGCs) are susceptible to mitochondrial deficits and also the major cell type affected in patients with mutations in the OPA1 gene in autosomal dominant optic atrophy (ADOA). Here, we characterized mitochondria in RGCs in vitro from a heterozygous B6; C3-Opa1Q285STOP (Opa1+/-) mouse model to investigate mitochondrial changes underlying the pathology in ADOA. Methods: Mouse RGCs were purified from wild-type and Opa1+/- mouse retina by two-step immunopanning. The mitochondria in neurites of RGCs were labeled with MitoTracker Red for structure and motility measurement by time-lapse imaging. Mitochondrial bioenergetics were determined by the real-time measurement of oxygen consumption rate using a Seahorse XFe 96 Extracellular Flux Analyzer. Results: We observed a significant decrease in mitochondrial length in Opa1+/- RGCs with a remarkably higher proportion and density of motile mitochondria along the neurites. We also observed an increased transport velocity with a higher number of contacts between mitochondria in Opa1+/- RGC neurites. The oxygen consumption assays showed a severe impairment in basal respiration, Adenosine triphosphate-linked (ATP-linked) oxygen consumption, as well as reserve respiratory capacity, in RGCs from Opa1+/- mouse retina. Conclusions: Opa1 deficiency leads to significant fragmentation of mitochondrial morphology, activation of mitochondrial motility and impaired respiratory function in RGCs from the B6; C3-Opa1Q285STOP mouse model. This highlights the significant alterations in the intricate interplay between mitochondrial morphology, motility, and energy production in RGCs with Opa1 deficiency long before the onset of clinical symptoms of the pathology.


Assuntos
Metabolismo Energético , GTP Fosfo-Hidrolases/deficiência , Mitocôndrias/metabolismo , Mutação , Atrofia Óptica Autossômica Dominante/genética , Células Ganglionares da Retina/metabolismo , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Células Ganglionares da Retina/patologia
16.
Ann Neurol ; 86(3): 368-383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31298765

RESUMO

OBJECTIVE: Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS: Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS: We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION: SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Proteínas Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Ligação Genética/genética , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Atrofia Óptica Autossômica Dominante/patologia , Linhagem , RNA Mensageiro/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Peixe-Zebra/genética
17.
Invest Ophthalmol Vis Sci ; 60(6): 1879-1887, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042794

RESUMO

Purpose: To assess the topographic relationship between the photopic negative response (PhNR) and retinal ganglion cell distribution in healthy individuals. Method: Data was recorded from 16 healthy participants. The amplitude of PhNRs obtained in response to focal long duration (250 ms) and brief flash (5 ms), red (660 nm) on blue (469 nm) stimuli of increasing size (5° - full field) were measured. The number of retinal ganglion cell receptive fields (RGCf) in each stimulus area was established from the literature and regression analysis used to determine the relationships between: PhNR amplitude and number of RGCfs stimulated, PhNR density and the RGCf density and response per RGCf as a function of eccentricity. Results: The overall amplitude of the PhNR increased with stimulus size and the response density declined from ∼0.1 µV/deg in the macular region to ∼0.003 µV/deg approximately 45° from the fovea. Contrary to expectations, the relationship between the PhNR and number of RGCf was nonlinear, the response from more eccentric neurons being about three times greater than those in the macular region. Conclusions: Although the amplitude of the PhNR broadly maps on to the topographic distribution of RGCf the increase in PhNR amplitude with increasing eccentricity is only partly explained by RGCf numbers. Increases in the PhNR amplitude may be due to topographic variations in the contributions from other non-RGC neurons, as well as eccentricity-related morphologic and physiologic differences in RGCs.


Assuntos
Visão de Cores/fisiologia , Eletrorretinografia/métodos , Células Ganglionares da Retina/fisiologia , Campos Visuais/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
18.
Acta Ophthalmol ; 97(1): e71-e76, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30259673

RESUMO

PURPOSE: In this prospective observational comparative case series, we aimed to study the peripapillary capillary network with spectral-domain optical coherence tomography angiography (OCT-A) in Leber hereditary optic neuropathy (LHON). METHODS: Twelve eyes of six individuals, of these three males (five eyes) after clinical onset of visual impairment were imaged by OCT-A with scans centred on optic discs. Control group consisted of 6 eyes with no visual impairment. RESULTS: The three affected individuals lost vision 6 years (at age 22 years), 2 years and 3 months (at age 26 years) and 1 year and 2 months (at age 30 years) prior to OCT-A examination. All five affected eyes had alterations in density of the radial peripapillary microvascular network at the level of retinal nerve fibre layer, including an eye of a patient treated with idebenone that underwent almost full recovery (best corrected visual acuity 0.87). Interestingly, the other eye showed normal ocular findings 14 months after onset. Results of OCT-A examination in this eye were unfortunately inconclusive due to a delineation error. At the level of the ganglion cell layer differences could be also noted, but only in two severely affected individuals. There were no differences between unaffected mutation carriers and control eyes. CONCLUSION: Optical coherence tomography angiography scans confirmed that the peripapillary microvascular network is highly abnormal in eyes manifesting visual impairment due to LHON. These findings support the hypothesis that microangiopathy contributes to the development of vision loss in this mitochondrial disorder.


Assuntos
Microcirculação/fisiologia , Microvasos/diagnóstico por imagem , Atrofia Óptica Hereditária de Leber/fisiopatologia , Disco Óptico/irrigação sanguínea , Vasos Retinianos/diagnóstico por imagem , Acuidade Visual , Adolescente , Adulto , Criança , Angiofluoresceinografia/métodos , Fundo de Olho , Humanos , Masculino , Fibras Nervosas/patologia , Atrofia Óptica Hereditária de Leber/diagnóstico , Disco Óptico/diagnóstico por imagem , Estudos Prospectivos , Células Ganglionares da Retina/patologia , Vasos Retinianos/fisiopatologia , Tomografia de Coerência Óptica/métodos , Campos Visuais , Adulto Jovem
20.
Front Cell Dev Biol ; 6: 103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283778

RESUMO

Background: Autosomal dominant optic atrophy (ADOA) is usually caused by mutations in the essential gene, OPA1. This encodes a ubiquitous protein involved in mitochondrial dynamics, hence tissue specificity is not understood. Dysregulated mitophagy (mitochondria recycling) is implicated in ADOA, being increased in OPA1 patient fibroblasts. Furthermore, autophagy may be increased in retinal ganglion cells (RGCs) of the OPA1Q285STOP mouse model. Aims: We developed a mouse model for studying mitochondrial dynamics in order to investigate mitophagy in ADOA. Methods: We crossed the OPA1Q285STOP mouse with our RedMIT/GFP-LC3 mouse, harboring red fluorescent mitochondria and green fluorescent autophagosomes. Colocalization between mitochondria and autophagosomes, the hallmark of mitophagy, was quantified in fluorescently labeled organelles in primary cell cultures, using two high throughput imaging methods Imagestream (Amnis) and IN Cell Analyzer 1000 (GE Healthcare Life Sciences). We studied colocalization between mitochondria and autophagosomes in fixed sections using confocal microscopy. Results: We validated our imaging methods for RedMIT/GFP-LC3 mouse cells, showing that colocalization of red fluorescent mitochondria and green fluorescent autophagosomes is a useful indicator of mitophagy. We showed that colocalization increases when lysosomal processing is impaired. Further, colocalization of mitochondrial fragments and autophagosomes is increased in cultures from the OPA1Q285STOP/RedMIT/GFP-LC3 mice compared to RedMIT/GFP-LC3 control mouse cells that were wild type for OPA1. This was apparent in both mouse embryonic fibroblasts (MEFs) using IN Cell 1000 and in splenocytes using ImageStream imaging flow cytometer (Amnis). We confirmed that this represents increased mitophagic flux using lysosomal inhibitors. We also used microscopy to investigate the level of mitophagy in the retina from the OPA1Q285STOP/RedMIT/GFP-LC3 mice and the RedMIT/GFP-LC3 control mice. However, the expression levels of fluorescent proteins and the image signal-to-background ratios precluded the detection of colocalization so we were unable to show any difference in colocalization between these mice. Conclusions: We show that colocalization of fluorescent mitochondria and autophagosomes in cell cultures, but not fixed tissues from the RedMIT/GFP-LC3, can be used to detect mitophagy. We used this model to confirm that mitophagy is increased in a mouse model of ADOA. It will be useful for cell based studies of diseases caused by impaired mitochondrial dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...