Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 124(23): 12824-12844, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-32025453

RESUMO

Quantifying the efficacy of different climate forcings is important for understanding the real-world climate sensitivity. This study presents a systematic multimodel analysis of different climate driver efficacies using simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). Efficacies calculated from instantaneous radiative forcing deviate considerably from unity across forcing agents and models. Effective radiative forcing (ERF) is a better predictor of global mean near-surface air temperature (GSAT) change. Efficacies are closest to one when ERF is computed using fixed sea surface temperature experiments and adjusted for land surface temperature changes using radiative kernels. Multimodel mean efficacies based on ERF are close to one for global perturbations of methane, sulfate, black carbon, and insolation, but there is notable intermodel spread. We do not find robust evidence that the geographic location of sulfate aerosol affects its efficacy. GSAT is found to respond more slowly to aerosol forcing than CO2 in the early stages of simulations. Despite these differences, we find that there is no evidence for an efficacy effect on historical GSAT trend estimates based on simulations with an impulse response model, nor on the resulting estimates of climate sensitivity derived from the historical period. However, the considerable intermodel spread in the computed efficacies means that we cannot rule out an efficacy-induced bias of ±0.4 K in equilibrium climate sensitivity to CO2 doubling when estimated using the historical GSAT trend.

2.
Nat Commun ; 9(1): 1922, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765048

RESUMO

Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability.

3.
J Clim ; 31(11): 4429-4447, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32704205

RESUMO

Atmospheric aerosols such as sulfate and black carbon (BC) generate inhomogeneous radiative forcing and can affect precipitation in distinct ways compared to greenhouse gases (GHGs). Their regional effects on the atmospheric energy budget and circulation can be important for understanding and predicting global and regional precipitation changes, which act on top of the background GHG-induced hydrological changes. Under the framework of the Precipitation Driver Response Model Inter-comparison Project (PDRMIP), multiple models were used for the first time to simulate the influence of regional (Asian and European) sulfate and BC forcing on global and regional precipitation. The results show that, as in the case of global aerosol forcing, the global fast precipitation response to regional aerosol forcing scales with global atmospheric absorption, and the slow precipitation response scales with global surface temperature response. Asian sulphate aerosols appear to be a stronger driver of global temperature and precipitation change compared to European aerosols, but when the responses are normalised by unit radiative forcing or by aerosol burden change, the picture reverses, with European aerosols being more efficient in driving global change. The global apparent hydrological sensitivities of these regional forcing experiments are again consistent with those for corresponding global aerosol forcings found in the literature. However, the regional responses and regional apparent hydrological sensitivities do not align with the corresponding global values. Through a holistic approach involving analysis of the energy budget combined with exploring changes in atmospheric dynamics, we provide a framework for explaining the global and regional precipitation responses to regional aerosol forcing.

4.
Geophys Res Lett ; 45(6): 2815-2825, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33041385

RESUMO

Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyse the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating, and also contributes to the large model spread. Using a simple model we show that CO2 physiological effects dominate future multi-model mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model-mean.

5.
Geophys Res Lett ; 45(21): 12023-12031, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30686845

RESUMO

Rapid adjustments are responses to forcing agents that cause a perturbation to the top of atmosphere energy budget but are uncoupled to changes in surface warming. Different mechanisms are responsible for these adjustments for a variety of climate drivers. These remain to be quantified in detail. It is shown that rapid adjustments reduce the effective radiative forcing (ERF) of black carbon by half of the instantaneous forcing, but for CO2 forcing, rapid adjustments increase ERF. Competing tropospheric adjustments for CO2 forcing are individually significant but sum to zero, such that the ERF equals the stratospherically adjusted radiative forcing, but this is not true for other forcing agents. Additional experiments of increase in the solar constant and increase in CH4 are used to show that a key factor of the rapid adjustment for an individual climate driver is changes in temperature in the upper troposphere and lower stratosphere.

6.
Geophys Res Lett ; 45(20): 11399-11405, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774164

RESUMO

Different climate drivers influence precipitation in different ways. Here we use radiative kernels to understand the influence of rapid adjustment processes on precipitation in climate models. Rapid adjustments are generally triggered by the initial heating or cooling of the atmosphere from an external climate driver. For precipitation changes, rapid adjustments due to changes in temperature, water vapor, and clouds are most important. In this study we have investigated five climate drivers (CO2, CH4, solar irradiance, black carbon, and sulfate aerosols). The fast precipitation responses to a doubling of CO2 and a 10-fold increase in black carbon are found to be similar, despite very different instantaneous changes in the radiative cooling, individual rapid adjustments, and sensible heating. The model diversity in rapid adjustments is smaller for the experiment involving an increase in the solar irradiance compared to the other climate driver perturbations, and this is also seen in the precipitation changes.

7.
Bull Am Meteorol Soc ; 98(6): 1185-1198, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32713957

RESUMO

As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of inter-model differences unaccounted for. Individual drivers of climate change initially alter the energy budget of the atmosphere leading to distinct rapid adjustments involving changes in precipitation. Differences in how these rapid adjustment processes manifest themselves within models are likely to explain a large fraction of the present model spread and needs better quantifications to improve precipitation predictions. Here, we introduce the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where a set of idealized experiments designed to understand the role of different climate forcing mechanisms were performed by a large set of climate models. PDRMIP focuses on understanding how precipitation changes relating to rapid adjustments and slower responses to climate forcings are represented across models. Initial results show that rapid adjustments account for large regional differences in hydrological sensitivity across multiple drivers. The PDRMIP results are expected to dramatically improve our understanding of the causes of the present diversity in future climate projections.

8.
Sci Total Environ ; 563-564: 40-52, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27135565

RESUMO

The importance of the long-range transport (LRT) on O3 and CO budgets over the Eastern Mediterranean has been investigated using the state-of-the-art 3-dimensional global chemistry-transport model TM4-ECPL. A 3-D budget analysis has been performed separating the Eastern from the Western basins and the boundary layer (BL) from the free troposphere (FT). The FT of the Eastern Mediterranean is shown to be a strong receptor of polluted air masses from the Western Mediterranean, and the most important source of polluted air masses for the Eastern Mediterranean BL, with about 40% of O3 and of CO in the BL to be transported from the FT aloft. Regional anthropogenic sources are found to have relatively small impact on regional air quality in the area, contributing by about 8% and 18% to surface levels of O3 and CO, respectively. Projections using anthropogenic emissions for the year 2050 but neglecting climate change calculate a surface O3 decrease of about 11% together with a surface CO increase of roughly 10% in the Eastern Mediterranean.

9.
Int J Oral Maxillofac Surg ; 43(4): 476-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24290308

RESUMO

The aim of this systematic review was to evaluate the outcomes of flapless surgery for implants placed using either free-hand or guided (with or without 3D navigation) surgical methods. Literature searches were conducted to collect information on survival rate, marginal bone loss, and complications of implants placed with such surgeries. Twenty-three clinical studies with a minimum of 1 year follow-up time were finally selected and reviewed. Free-hand flapless surgery demonstrated survival rates between 98.3% and 100% and mean marginal bone loss between 0.09 and 1.40 mm at 1-4 years after implant insertion. Flapless guided surgery without 3D navigation showed survival rates between 91% and 100% and mean marginal bone loss of 0.89 mm after an observation period of 2-10 years. The survival rates and mean marginal bone loss for implants placed with 3D guided flapless surgery were 89-100% and 0.55-2.6mm, respectively, at 1-5 years after implant insertion. In 17 studies, surgical and technical complications such as bone perforation, fracture of the surgical guide, and fracture of the provisional prosthesis were reported. However, none of the identified methods has demonstrated advantages over the others. Further studies are needed to confirm the predictability and effectiveness of 3D navigation techniques.


Assuntos
Implantação Dentária Endóssea/métodos , Implantes Dentários , Falha de Restauração Dentária , Diagnóstico por Imagem , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Cirurgia Assistida por Computador , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...