Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 24(2): 1025-1039, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38348019

RESUMO

Future African aerosol emissions, and therefore air pollution levels and health outcomes, are uncertain and understudied. Understanding the future health impacts of pollutant emissions from this region is crucial. Here, this research gap is addressed by studying the range in the future health impacts of aerosol emissions from Africa in the Shared Socioeconomic Pathway (SSP) scenarios, using the UK Earth System Model version 1 (UKESM1), along with human health concentration-response functions. The effects of Africa following a high-pollution aerosol pathway are studied relative to a low-pollution control, with experiments varying aerosol emissions from industry and biomass burning. Using present-day demographics, annual deaths within Africa attributable to ambient particulate matter are estimated to be lower by 150 000 (5th-95th confidence interval of 67 000-234 000) under stronger African aerosol mitigation by 2090, while those attributable to O3 are lower by 15 000 (5th-95th confidence interval of 9000-21 000). The particulate matter health benefits are realised predominantly within Africa, with the O3-driven benefits being more widespread - though still concentrated in Africa - due to the longer atmospheric lifetime of O3. These results demonstrate the important health co-benefits from future emission mitigation in Africa.

2.
Sci Total Environ ; 892: 164797, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37315609

RESUMO

Airborne particles are known climate drivers whilst the impact of microorganisms is investigated with increasing interest. The particle number size distribution (0.012-10 µm), PM10 concentrations, bacterial communities and cultivable microorganisms (bacteria and fungi) were measured simultaneously throughout a yearly campaign at a suburban location at the city of Chania (Greece). Most of the bacteria identified belonged to Proteobacteria, Actinobacteriota, Cyanobacteria, and Firmicutes, with Sphingomonas having a dominant partition at the genus level. Statistically lower concentrations of all microorganisms and bacterial species richness during the warm season due to the direct impact of temperature and solar radiation suggested notable seasonality. On the other hand, statistically significant higher concentrations of particles <0.1 µm during the cold season was attributed to indirect seasonality with enrichment due to heating emissions. Analysis of wind direction data demonstrated that a land prevailing origin of air resulted in statistically higher microorganism concentrations, bacterial species richness and diversity, indicating the continental environment as a dominant contributor in shaping airborne microbial load (compared to a marine air origin). Likewise, statistically higher concentration of particles <0.1 µm were measured during a land prevailing air origin as a direct result of nanoparticle enrichment from anthropogenic activities. Long-range transport of both particles and biological components was evidenced by the increased concentrations of cultivable microorganisms (with a distinct contribution at sizes >1 µm), supermicron particles and bacterial species richness during Sahara dust events. Factorial analysis of the impact of 7 environmental parameters on bacterial communities profile has identified temperature, solar radiation, wind origin and Sahara dust as strong contributors. Increased correlations between airborne microorganisms and coarser particles (0.5-10 µm) suggested resuspension, especially during stronger winds and moderate ambient humidity, whereas, increased relative humidity during stagnant conditions acted as inhibitor for suspension.


Assuntos
Poluentes Atmosféricos , Bactérias , Estações do Ano , Poeira/análise , Clima , Firmicutes , Monitoramento Ambiental , Microbiologia do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise
3.
Sci Total Environ ; 842: 156918, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753465

RESUMO

The aim of this paper is the creation of an integrated and free-access web platform for parcel irrigation water management on a large spatial scale (Water District of Crete, in Greece) in order to: a) accurately determine the irrigation needs of the main crops for Crete such as olives, citrus, avocados and vineyards, b) design strategies, for optimal adaptation of the agricultural sector in the context of climate change, and c) incorporate the dynamic integration of the above information through the creation of a digital platform. In the proposed decision-making system, essential factors are taken into account, such as real-time meteorological data, information about the type and spatial distribution of the agricultural parcels in Crete, algorithms for calculation crop evapotranspiration per development stage and age of the crops, satellite remote sensing techniques in combination with field surveys to depict accurate soil texture map for the whole island of Crete as well as sustainable cultivation practices for saving water per crop and parcel geomorphology. Based on the proposed decision-making system, users will have the opportunity in any specific location/farm in Crete to know the irrigation needs of the crops in real-time and obtain information about proper climate-water adaptation practices. The main novelty points of the proposed platform include the derivation of parcel-level soil texture data from Sentinel-2 satellite imagery and field samples, the comprehensiveness of the irrigation management information, the relatively low data requirements and the application interface simplicity provided to the end-user.


Assuntos
Agricultura , Sistemas de Informação Geográfica , Irrigação Agrícola/métodos , Agricultura/métodos , Produtos Agrícolas , Fazendas , Grécia , Internet , Solo , Água
4.
Sci Data ; 9(1): 123, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354809

RESUMO

This data descriptor reports the main scientific values from General Circulation Models (GCMs) in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). The purpose of the GCM simulations has been to enhance the scientific understanding of how changes in greenhouse gases, aerosols, and incoming solar radiation perturb the Earth's radiation balance and its climate response in terms of changes in temperature and precipitation. Here we provide global and annual mean results for a large set of coupled atmospheric-ocean GCM simulations and a description of how to easily extract files from the dataset. The simulations consist of single idealized perturbations to the climate system and have been shown to achieve important insight in complex climate simulations. We therefore expect this data set to be valuable and highly used to understand simulations from complex GCMs and Earth System Models for various phases of the Coupled Model Intercomparison Project.

5.
Commun Earth Environ ; 3(1): 328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588543

RESUMO

Precipitation has increased across the arid Central Asia region over recent decades. However, the underlying mechanisms of this trend are poorly understood. Here, we analyze multi-model simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP) to investigate potential drivers of the observed precipitation trend. We find that anthropogenic sulfate aerosols over remote polluted regions in South and East Asia lead to increased summer precipitation, especially convective and extreme precipitation, in arid Central Asia. Elevated concentrations of sulfate aerosols over remote polluted Asia cause an equatorward shift of the Asian Westerly Jet Stream through a fast response to cooling of the local atmosphere at mid-latitudes. This shift favours moisture supply from low-latitudes and moisture flux convergence over arid Central Asia, which is confirmed by a moisture budget analysis. High levels of absorbing black carbon lead to opposing changes in the Asian Westerly Jet Stream and reduced local precipitation, which can mask the impact of sulfate aerosols. This teleconnection between arid Central Asia precipitation and anthropogenic aerosols in remote Asian polluted regions highlights long-range impacts of anthropogenic aerosols on atmospheric circulations and the hydrological cycle.

6.
J Geophys Res Atmos ; Volume 122(Iss 21): 11462-11481, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32441705

RESUMO

We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by 9 global coupled-climate models, producing a model-median effective radiative forcing (ERF) of 0.82 (ranging from 0.41 to 2.91) Wm-2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 Wm-2 based on five of the models) is countered by negative rapid adjustments (-0.64 Wm-2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small global warming of 0.47 K per Wm-2 - about 20 % lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.

7.
Geophys Res Lett ; 44(19): 9996-10005, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32803204

RESUMO

We conducted a case study of NCEP CFSv2 seasonal model forecast performance over Indonesia in predicting the dry conditions in 2015 that led to severe fire, in comparison to the non-El Niño dry season conditions of 2016. Forecasts of the Drought Code (DC) component of Indonesia's Fire Danger Rating System were examined across the entire Equatorial Asia region and for the primary burning regions within it. Our results show that early warning lead times of high observed DC in September and October 2015 varied considerably for different regions. High DC over Southern Kalimantan and Southern New Guinea were predicted with 180-day lead times, whereas Southern Sumatra had lead times of up to only 60 days, which we attribute to the absence in the forecasts of an eastward decrease in Indian Ocean SSTs. This case study provides the starting point for longer-term evaluation of seasonal fire danger rating forecasts over Indonesia.

8.
J Geophys Res Atmos ; 121(8): 4296-4316, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32747872

RESUMO

We simulated the high-altitude smoke plume from the early February 2009 Black Saturday bushfires in southeastern Australia using the NASA GISS ModelE2. To the best of our knowledge, this is the first single-plume analysis of biomass burning emissions injected directly into the upper-troposphere/lower stratosphere (UTLS) using a full-complexity composition-climate model. We compared simulated carbon monoxide (CO) to a new Aura TES/MLS joint CO retrieval, focusing on the plume's initial transport eastward, anticyclonic circulation to the north of New Zealand, westward transport in the lower stratospheric easterlies, and arrival over Africa at the end of February. Our goal was to determine the sensitivity of the simulated plume to prescribed injection height, emissions amount and emissions timing from different sources for a full complexity model when compared to Aura. The most realistic plumes were obtained using injection heights in the UTLS, including one drawn from ground-based radar data. A six-hour emissions pulse or emissions tied to independent estimates of hourly fire behavior produced a more realistic plume in the lower stratosphere compared to the same emissions amount being released evenly over 12 or 24-hours. Simulated CO in the plume was highly sensitive to the differences between emissions amounts estimated from the Global Fire Emissions Database and from detailed, ground-based estimates of fire growth. The emissions amount determined not only the CO concentration of the plume, but the proportion of the plume that entered the stratosphere. We speculate that this is due to either or both non-linear CO loss with a weakened OH sink, or plume self-lofting driven by shortwave absorption of the co-emitted aerosols.

9.
Int J Prosthodont ; 27(4): 355-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25010879

RESUMO

The aim of this prospective clinical study was to investigate the long-term performance of all-ceramic veneers with overlap (OV) and full veneer (FV) preparation designs. Twenty-five patients were restored using 42 OV restorations (incisal/palatal butt-joint margin) and 24 FV restorations (palatal rounded shoulder margin). All restorations were leucite-reinforced glass-ceramic anterior veneers. The 7-year Kaplan-Meier survival rate was 100% for FV restorations and 97.6% for OV restorations. The all-ceramic veneers revealed significant deterioration over time according to United States Public Health Service criteria, irrespective of the preparation design. Based on the 7-year results of this study, both preparation designs can be considered reliable treatment options for anterior teeth with extended deficits.


Assuntos
Porcelana Dentária/química , Planejamento de Prótese Dentária , Facetas Dentárias , Adulto , Silicatos de Alumínio/química , Cimentação/métodos , Cerâmica/química , Cor , Cárie Dentária/etiologia , Adaptação Marginal Dentária , Falha de Restauração Dentária , Sensibilidade da Dentina/etiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Cimentos de Resina/química , Propriedades de Superfície , Análise de Sobrevida , Preparo Prostodôntico do Dente/métodos , Adulto Jovem
10.
Nat Clim Chang ; 3: 131-136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25379058

RESUMO

Emissions from landscape fires affect both climate and air quality1. In this study, we combine satellite-derived fire estimates and atmospheric modeling to quantify health effects from fire emissions in Southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity due to coupling between El Niño-induced droughts and anthropogenic land use change2,3. We show that during strong El Niño years, fires contribute up to 200 µg/m3 and 50 ppb in annual average fine particulate matter (PM2.5) and ozone (O3) surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization (WHO) 50 µg/m3 24-hour PM2.5 interim target (IT-2)4 and an estimated 10,800 (6,800-14,300) person (~2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity, and maintaining ecosystem services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...