Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(18): 4909-4912, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707934

RESUMO

Relying on Feynman-Kac path-integral methodology, we present a new statistical perspective on wave single-scattering by complex three-dimensional objects. The approach is implemented on three models-Schiff approximation, Born approximation, and rigorous Born series-and familiar interpretative difficulties such as the analysis of moments over scatterer distributions (size, orientation, shape, etc.) are addressed. In terms of the computational contribution, we show that commonly recognized features of the Monte Carlo method with respect to geometric complexity can now be available when solving electromagnetic scattering.

2.
PLoS One ; 18(4): e0283681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023098

RESUMO

It was recently shown that radiation, conduction and convection can be combined within a single Monte Carlo algorithm and that such an algorithm immediately benefits from state-of-the-art computer-graphics advances when dealing with complex geometries. The theoretical foundations that make this coupling possible are fully exposed for the first time, supporting the intuitive pictures of continuous thermal paths that run through the different physics at work. First, the theoretical frameworks of propagators and Green's functions are used to demonstrate that a coupled model involving different physical phenomena can be probabilized. Second, they are extended and made operational using the Feynman-Kac theory and stochastic processes. Finally, the theoretical framework is supported by a new proposal for an approximation of coupled Brownian trajectories compatible with the algorithmic design required by ray-tracing acceleration techniques in highly refined geometry.


Assuntos
Convecção , Temperatura Alta , Simulação por Computador , Fenômenos Físicos , Algoritmos , Método de Monte Carlo
3.
Commun Biol ; 6(1): 262, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906689

RESUMO

Smooth muscle cells (SMCs) are mural cells that play a vital contractile function in many tissues. Abnormalities in SMC organization are associated with many diseases including atherosclerosis, asthma, and uterine fibroids. Various studies have reported that SMCs cultured on flat surfaces can spontaneously form three-dimensional clusters whose organization resembles that encountered in some of these pathological settings. Remarkably, how these structures form remains unknown. Here we combine in vitro experiments and physical modeling to show that three-dimensional clusters initiate when cellular contractile forces induce a hole in a flat SMC sheet, a process that can be modeled as the brittle fracture of a viscoelastic material. The subsequent evolution of the nascent cluster can be modeled as an active dewetting process with cluster shape evolution driven by a balance between cluster surface tension, arising from both cell contractility and adhesion, and cluster viscous dissipation. The description of the physical mechanisms governing the spontaneous emergence of these intriguing three-dimensional clusters may offer insight into SMC-related disorders.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Contração Muscular
4.
PLoS One ; 16(7): e0255002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293011

RESUMO

Most chemical reactions promoted by light and using a photosensitizer (a dye) are subject to the phenomenon of luminescence. Redistribution of light in all directions (isotropic luminescence emission) and in a new spectral range (luminescence emission spectrum) makes experimental and theoretical studies much more complex compared to a situation with a purely absorbing reaction volume. This has a significant impact on the engineering of photoreactors for industrial applications. Future developments associated with photoreactive system optimization are therefore extremely challenging, and require an in-depth description and quantitative analysis of luminescence. In this study, a radiative model describing the effect of luminescence radiation on the calculation of absorptance is presented and analyzed with the multiple inelastic-scattering approach, using Monte Carlo simulations. The formalism of successive orders of scattering expansion is used as a sophisticated analysis tool which provides, when combined with relevant physical approximations, convenient analytical approximate solutions. Its application to four photosensitizers that are representative of renewable hydrogen production via artificial photosynthesis indicates that luminescence has a significant impact on absorptance and on overall quantum yield estimation, with the contribution of multiple scattering and important spectral effects due to inelastic scattering. We show that luminescence cannot be totally neglected in that case, since photon absorption lies at the root of the chemical reaction. We propose two coupled simple and appropriate analytical approximations enabling the estimation of absorptance with a relative error below 6% in every tested situation: the zero-order scattering approximation and the gray single-scattering approximation. Finally, this theoretical approach is used to determine and discuss the overall quantum yield of a bio-inspired photoreactive system with Eosin Y as a photosensitizer, implemented in an experimental setup comprising a photoreactor dedicated to hydrogen production.


Assuntos
Luminescência , Modelos Químicos , Fármacos Fotossensibilizantes/química , Fotossíntese , Luz Solar , Medições Luminescentes
5.
Cancer Cell ; 39(6): 810-826.e9, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33930311

RESUMO

STAG2, a cohesin family gene, is among the most recurrently mutated genes in cancer. STAG2 loss of function (LOF) is associated with aggressive behavior in Ewing sarcoma, a childhood cancer driven by aberrant transcription induced by the EWSR1-FLI1 fusion oncogene. Here, using isogenic Ewing cells, we show that, while STAG2 LOF profoundly changes the transcriptome, it does not significantly impact EWSR1-FLI1, CTCF/cohesin, or acetylated H3K27 DNA binding patterns. In contrast, it strongly alters the anchored dynamic loop extrusion process at boundary CTCF sites and dramatically decreases promoter-enhancer interactions, particularly affecting the expression of genes regulated by EWSR1-FLI1 at GGAA microsatellite neo-enhancers. Down-modulation of cis-mediated EWSR1-FLI1 activity, observed in STAG2-LOF conditions, is associated with enhanced migration and invasion properties of Ewing cells previously observed in EWSR1-FLI1low cells. Our study illuminates a process whereby STAG2-LOF fine-tunes the activity of an oncogenic transcription factor through altered CTCF-anchored loop extrusion and cis-mediated enhancer mechanisms.


Assuntos
Neoplasias Ósseas/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/genética , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Mutação com Perda de Função , Lisina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Regiões Promotoras Genéticas , Sarcoma de Ewing/mortalidade , Sarcoma de Ewing/patologia , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...