Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(677): eabq6885, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599003

RESUMO

Facilitating axon regeneration in the injured central nervous system remains a challenging task. RAF-MAP2K signaling plays a key role in axon elongation during nervous system development. Here, we show that conditional expression of a constitutively kinase-activated BRAF in mature corticospinal neurons elicited the expression of a set of transcription factors previously implicated in the regeneration of zebrafish retinal ganglion cell axons and promoted regeneration and sprouting of corticospinal tract (CST) axons after spinal cord injury in mice. Newly sprouting axon collaterals formed synaptic connections with spinal interneurons, resulting in improved recovery of motor function. Noninvasive suprathreshold high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) activated the BRAF canonical downstream effectors MAP2K1/2 and modulated the expression of a set of regeneration-related transcription factors in a pattern consistent with that induced by BRAF activation. HF-rTMS enabled CST axon regeneration and sprouting, which was abolished in MAP2K1/2 conditional null mice. These data collectively demonstrate a central role of MAP2K signaling in augmenting the growth capacity of mature corticospinal neurons and suggest that HF-rTMS might have potential for treating spinal cord injury by modulating MAP2K signaling.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Camundongos , Axônios/fisiologia , Engenharia Genética , Regeneração Nervosa/fisiologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Tratos Piramidais/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Estimulação Magnética Transcraniana , Fatores de Transcrição/metabolismo , Peixe-Zebra
2.
Mol Nutr Food Res ; 59(3): 501-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25488634

RESUMO

SCOPE: Hepatocellular carcinoma is one of the most frequently occurring cancers in humans. Recent human and animal studies have provided strong evidence for the effects of dietary deficiency of methyl donors on the development of liver cancer. However, the mechanisms underlying the effects of methyl-group deficiency on cancer risk are not properly understood. METHODS AND RESULTS: Male BALB/c and CBA/Ca mice were maintained for 8 weeks on a synthetic diet lacking in choline and folic acid. Using microarrays, the pattern of gene expression was evaluated in their liver, kidney, and spleen. Methyl-donor deficient diet induced profound changes in gene expression in the liver of treated animals, whereas the effects of the methyl-deficient diet on the pattern of gene expression in the kidney and spleen were negligible. Methyl-donor dietary restriction induced strain-independent upregulation of genes involved in cellular proliferation in liver. CONCLUSION: The results of our study provide a plausible explanation of why diets lacking methyl donors can induce the development of liver cancers in rodents and humans.


Assuntos
Deficiências Nutricionais/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Colina/farmacologia , Dieta , Feminino , Ácido Fólico/farmacologia , Rim/efeitos dos fármacos , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Baço/efeitos dos fármacos , Baço/fisiologia , Análise Serial de Tecidos
3.
Mutat Res ; 734(1-2): 1-4, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22569175

RESUMO

The results of recent human and animal studies have provided strong evidence for the epigenetic effects of a dietary deficiency of methyl donors such as folate, choline and methionine on cancer risk and some other common diseases. However, the mechanisms underlying the links between epigenetic alterations and disease remain elusive. To establish whether a methyl-donor deficient diet can result in long-term changes in mutation rate in treated animals and their offspring, BALB/c male mice were maintained for 8 weeks, from 4 weeks of age, on a synthetic diet lacking in choline and folic acid. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in sperm samples of treated males, as well as in sperm and brain of their first-generation offspring. ESTR mutation frequency in the germline of males sacrificed immediately after treatment or sampled 6 and 10 weeks after the end of dietary restriction did not significantly differ from that in age-matched control groups. The frequency of ESTR mutation in DNA samples extracted from sperm and brain of the first-generation offspring of treated mice was also similar to that in controls. The results of our study suggest that the effects of a methyl-donor deficient diet on mutation induction and transgenerational instability in mice are likely to be negligible.


Assuntos
Deficiência de Colina/genética , Deficiência de Ácido Fólico/genética , Instabilidade Genômica , Mutação , Animais , Química Encefálica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espermatozoides/química , Sequências de Repetição em Tandem
4.
Mutat Res ; 664(1-2): 6-12, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19428375

RESUMO

Epidemiological evidence suggests that the deleterious effects of prenatal irradiation can manifest during childhood, resulting in an increased risk of leukaemia and solid cancers after birth. However, the mechanisms underlying the long-term effects of foetal irradiation remain poorly understood. This study was designed to analyse the impact of in utero irradiation on mutation rates at expanded simple tandem repeat (ESTR) DNA loci in directly exposed mice and their first-generation (F(1)) offspring. ESTR mutation frequencies in the germline and somatic tissues of male and female mice irradiated at 12 days of gestation remained highly elevated during adulthood, which was mainly attributed to a significant increase in the frequency of singleton mutations. The prevalence of singleton mutations in directly exposed mice suggests that foetal irradiation results in genomic instability manifested both in utero and during adulthood. The frequency of ESTR mutation in the F(1) offspring of prenatally irradiated male mice was equally elevated across all tissues, which suggests that foetal exposure results in transgenerational genomic instability. In contrast, maternal in utero exposure did not affect the F(1) stability. Our data imply that the passive erasure of epigenetic marks in the maternal genome can diminish the transgenerational effects of foetal irradiation and therefore provide important clues to the still unknown mechanisms of radiation-induced genomic instability. The results of this study offer a plausible explanation for the effects of in utero irradiation on the risk of leukaemia and solid cancers after birth.


Assuntos
Expansão das Repetições de DNA/efeitos da radiação , Embrião de Mamíferos/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Mutação , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA/genética , Feminino , Mutação em Linhagem Germinativa/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linhagem , Reação em Cadeia da Polimerase , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...