Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940284

RESUMO

BACKGROUND/INTRODUCTION: Sarcomas are a heterogenous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases makes treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which lead to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher, toxic doses of chemotherapy. Here, we tested the mechanotherapeutic ketotifen combined with either pegylated-liposomal doxorubicin (PLD) or pegylated-liposomal co-encapsulated alendronate-doxorubicin (PLAD) plus anti-PD-1 antibody in mouse models of fibrosarcoma and osteosarcoma. RESULTS: We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave-elastography (SWE) and contrast-enhanced-ultrasound (CEUS) respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. An additional observation was a trend to improved antitumor response when nano-chemotherapy is given alongside anti-PD1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy, increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper-cell and decreased the number of regulatory-T-cells. In addition, the combination also altered the polarization of tumor associated macrophages, favouring the M1 immune-supportive phenotype over the M2 immuno-suppressive phenotype. CONCLUSION: Collectively, our findings provide evidence that ketotifen-induced TME reprograming can improve the efficacy of nanomedicine-based chemoimmunotherapy in sarcomas.

2.
Cell Rep Med ; 5(7): 101626, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38944037

RESUMO

Solid tumor pathology, characterized by abnormalities in the tumor microenvironment (TME), challenges therapeutic effectiveness. Mechanical factors, including increased tumor stiffness and accumulation of intratumoral forces, can determine the success of cancer treatments, defining the tumor's "mechanopathology" profile. These abnormalities cause extensive vascular compression, leading to hypoperfusion and hypoxia. Hypoperfusion hinders drug delivery, while hypoxia creates an unfavorable TME, promoting tumor progression through immunosuppression, heightened metastatic potential, drug resistance, and chaotic angiogenesis. Strategies targeting TME mechanopathology, such as vascular and stroma normalization, hold promise in enhancing cancer therapies with some already advancing to the clinic. Normalization can be achieved using anti-angiogenic agents, mechanotherapeutics, immune checkpoint inhibitors, engineered bacterial therapeutics, metronomic nanomedicine, and ultrasound sonopermeation. Here, we review the methods developed to rectify tumor mechanopathology, which have even led to cures in preclinical models, and discuss their bench-to-bedside translation, including the derivation of biomarkers from tumor mechanopathology for personalized therapy.


Assuntos
Imunoterapia , Neoplasias , Neovascularização Patológica , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/imunologia , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Neovascularização Patológica/patologia , Animais , Inibidores da Angiogênese/uso terapêutico
3.
PLoS One ; 19(5): e0301780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820409

RESUMO

Critical illness, such as severe COVID-19, is heterogenous in presentation and treatment response. However, it remains possible that clinical course may be influenced by dynamic and/or random events such that similar patients subject to similar injuries may yet follow different trajectories. We deployed a mechanistic mathematical model of COVID-19 to determine the range of possible clinical courses after SARS-CoV-2 infection, which may follow from specific changes in viral properties, immune properties, treatment modality and random external factors such as initial viral load. We find that treatment efficacy and baseline patient or viral features are not the sole determinant of outcome. We found patients with enhanced innate or adaptive immune responses can experience poor viral control, resolution of infection or non-infectious inflammatory injury depending on treatment efficacy and initial viral load. Hypoxemia may result from poor viral control or ongoing inflammation despite effective viral control. Adaptive immune responses may be inhibited by very early effective therapy, resulting in viral load rebound after cessation of therapy. Our model suggests individual disease course may be influenced by the interaction between external and patient-intrinsic factors. These data have implications for the reproducibility of clinical trial cohorts and timing of optimal treatment.


Assuntos
COVID-19 , Modelos Teóricos , SARS-CoV-2 , Carga Viral , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Imunidade Inata , Tratamento Farmacológico da COVID-19
4.
Clin Cancer Res ; 30(11): 2582-2597, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578281

RESUMO

PURPOSE: To explore the cellular cross-talk of tumor-resident mast cells (MC) in controlling the activity of cancer-associated fibroblasts (CAF) to overcome tumor microenvironment (TME) abnormalities, enhancing the efficacy of immune-checkpoint inhibitors in sarcoma. EXPERIMENTAL DESIGN: We used a coculture system followed by further validation in mouse models of fibrosarcoma and osteosarcoma with or without administration of the MC stabilizer and antihistamine ketotifen. To evaluate the contribution of ketotifen in sensitizing tumors to therapy, we performed combination studies with doxorubicin chemotherapy and anti-PD-L1 (B7-H1, clone 10F.9G2) treatment. We investigated the ability of ketotifen to modulate the TME in human sarcomas in the context of a repurposed phase II clinical trial. RESULTS: Inhibition of MC activation with ketotifen successfully suppressed CAF proliferation and stiffness of the extracellular matrix accompanied by an increase in vessel perfusion in fibrosarcoma and osteosarcoma as indicated by ultrasound shear wave elastography imaging. The improved tissue oxygenation increased the efficacy of chemoimmunotherapy, supported by enhanced T-cell infiltration and acquisition of tumor antigen-specific memory. Importantly, the effect of ketotifen in reducing tumor stiffness was further validated in sarcoma patients, highlighting its translational potential. CONCLUSIONS: Our study suggests the targeting of MCs with clinically administered drugs, such as antihistamines, as a promising approach to overcome resistance to immunotherapy in sarcomas.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Mastócitos , Microambiente Tumoral , Humanos , Camundongos , Animais , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Sarcoma/imunologia , Cetotifeno/farmacologia , Cetotifeno/uso terapêutico , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Feminino , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/imunologia
5.
Cell Rep Med ; 5(3): 101436, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508146

RESUMO

This study introduces a tailored COVID-19 model for patients with cancer, incorporating viral variants and immune-response dynamics. The model aims to optimize vaccination strategies, contributing to personalized healthcare for vulnerable groups.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Vacinação
6.
Transl Oncol ; 44: 101944, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552284

RESUMO

In the pursuit of advancing cancer therapy, this study explores the predictive power of machine learning in analyzing tumor characteristics, specifically focusing on the effects of tumor stiffness and perfusion (i.e., blood flow) on treatment efficacy. Recent advancements in oncology have highlighted the significance of these physiological properties of the tumor microenvironment in determining treatment outcomes. We delve into the relationship between these tumor attributes and the effectiveness of cancer therapies in preclinical tumor models. Utilizing robust statistical methods and machine learning algorithms, our research analyzes data from 1365 cases of various cancer types, assessing how tumor stiffness and perfusion influence the efficacy of treatment protocols. We also investigate the synergistic potential of combining drugs that modulate tumor stiffness and perfusion with standard cytotoxic treatments. By incorporating these predictors into treatment planning, our study aims to enhance the precision of cancer therapy, tailoring treatment to individual tumor profiles. Our findings demonstrate a significant correlation between stiffness/perfusion and treatment efficacy, highlighting a new way for personalized cancer treatment strategies.

7.
Neoplasia ; 51: 100990, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38520790

RESUMO

The lack of properly perfused blood vessels within tumors can significantly hinder the distribution of drugs, leading to reduced treatment effectiveness and having a negative impact on the quality of life of patients with cancer. This problem is particularly pronounced in desmoplastic cancers, where interactions between cancer cells, stromal cells, and the fibrotic matrix lead to tumor stiffness and the compression of most blood vessels within the tumor. To address this issue, two mechanotherapy approaches-mechanotherapeutics and ultrasound sonopermeation-have been employed separately to treat vascular abnormalities in tumors and have reached clinical trials. Here, we performed in vivo studies in sarcomas, to explore the conditions under which these two mechanotherapy strategies could be optimally combined to enhance perfusion and the efficacy of nano-immunotherapy. Our findings demonstrate that combination of the anti-histamine drug ketotifen, as a mechanotherapeutic, and sonopermeation effectively alleviates mechanical forces by decreasing 50 % collagen and hyaluronan levels and thus, reshaping the tumor microenvironment. Furthermore, the combined therapy normalizes the tumor vasculature by increasing two-fold the pericytes coverage. This combination not only improves six times tumor perfusion but also enhances drug delivery. As a result, blood vessel functionality is enhanced, leading to increased infiltration by 40 % of immune cells (CD4+ and CD8+ T-cells) and improving the antitumor efficacy of Doxil nanomedicine and anti-PD-1 immunotherapy. In conclusion, our research underscores the unique and synergistic potential of combining mechanotherapeutics and sonopermeation. Both approaches are undergoing clinical trials to enhance cancer therapy and have the potential to significantly improve nano-immunotherapy in sarcomas.


Assuntos
Linfócitos T CD8-Positivos , Sarcoma , Humanos , Microambiente Tumoral , Qualidade de Vida , Imunoterapia , Sarcoma/tratamento farmacológico
8.
Cell Rep ; 43(3): 113859, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421873

RESUMO

Oct4 is a pioneer transcription factor regulating pluripotency. However, it is not well known whether Oct4 has an impact on epidermal cells. We generated OCT4 knockout clonal cell lines using immortalized human skin keratinocytes to identify a functional role for the protein. Here, we report that Oct4-deficient cells transitioned into a mesenchymal-like phenotype with enlarged size and shape, exhibited accelerated migratory behavior, decreased adhesion, and appeared arrested at the G2/M cell cycle checkpoint. Oct4 absence had a profound impact on cortical actin organization, with loss of microfilaments from the cell membrane, increased puncta deposition in the cytoplasm, and stress fiber formation. E-cadherin, ß-catenin, and ZO1 were almost absent from cell-cell contacts, while fibronectin deposition was markedly increased in the extracellular matrix (ECM). Mapping of the transcriptional and chromatin profiles of Oct4-deficient cells revealed that Oct4 controls the levels of cytoskeletal, ECM, and differentiation-related genes, whereas epithelial identity is preserved through transcriptional and non-transcriptional mechanisms.


Assuntos
Caderinas , Queratinócitos , Humanos , Caderinas/metabolismo , Queratinócitos/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , beta Catenina/metabolismo , Pele/metabolismo , Adesão Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA