Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(18): 4322-4326, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37132594

RESUMO

Poly(amidoamine) (PAMAM) dendrimers are used to modify the interface of metal-semiconductor junctions. The large number of protonated amines contributes to the formation of a dipole layer, which finally serves to form electron-selective contacts in silicon heterojunction solar cells. By modification of the work function of the contacts, the addition of the PAMAM dendrimer interlayer quenches Fermi level pinning, thus creating an ohmic contact between the metal and the semiconductor. This is supported by the observation of a low contact resistivity of 4.5 mΩ cm2, the shift in work function, and the n-type behavior of PAMAM dendrimer films on the surface of crystalline silicon. A silicon heterojunction solar cell containing the PAMAM dendrimer interlayer is presented, which achieved a power conversion efficiency of 14.5%, an increase of 8.3% over the reference device without the dipole interlayer.

2.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770227

RESUMO

In this work, a new design of transparent conductive electrode based on a graphene monolayer is evaluated. This hybrid electrode is incorporated into non-standard, high-efficiency crystalline silicon solar cells, where the conventional emitter is replaced by a MoOx selective contact. The device characterization reveals a clear electrical improvement when the graphene monolayer is placed as part of the electrode. The current-voltage characteristic of the solar cell with graphene shows an improved FF and Voc provided by the front electrode modification. Improved conductance values up to 5.5 mS are achieved for the graphene-based electrode, in comparison with 3 mS for bare ITO. In addition, the device efficiency improves by around 1.6% when graphene is incorporated on top. These results so far open the possibility of noticeably improving the contact technology of non-conventional photovoltaic technologies and further enhancing their performance.

3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834505

RESUMO

High open-circuit voltage in Sb2Se3 thin-film solar cells is a key challenge in the development of earth-abundant photovoltaic devices. CdS selective layers have been used as the standard electron contact in this technology. Long-term scalability issues due to cadmium toxicity and environmental impact are of great concern. In this study, we propose a ZnO-based buffer layer with a polymer-film-modified top interface to replace CdS in Sb2Se3 photovoltaic devices. The branched polyethylenimine layer at the ZnO and transparent electrode interface enhanced the performance of Sb2Se3 solar cells. An important increase in open-circuit voltage from 243 mV to 344 mV and a maximum efficiency of 2.4% was achieved. This study attempts to establish a relation between the use of conjugated polyelectrolyte thin films in chalcogenide photovoltaics and the resulting device improvements.


Assuntos
Intoxicação por Cádmio , Óxido de Zinco , Humanos , Elétrons , Polímeros , Planeta Terra
4.
Mater Adv ; 3(1): 337-345, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128416

RESUMO

Transition metal oxides (TMOs) are promising materials to develop selective contacts on high-efficiency crystalline silicon solar cells. Nevertheless, the standard deposition technique used for TMOs is thermal evaporation, which could add potential scalability problems to industrial photovoltaic fabrication processes. As an alternative, atomic layer deposition (ALD) is a thin film deposition technique already used for dielectric deposition in the semiconductor device industry that has a straightforward up scalable design. This work reports the results of vanadium oxide (V2O5) films deposited by ALD acting as a hole-selective contact for n-type crystalline silicon (c-Si) solar cell frontal transparent contact without the additional PECVD passivating layer. A reasonable specific contact resistance of 100 mΩ cm2 was measured by the transfer length method. In addition, measurements suggest the presence of an inversion layer at the c-Si/V2O5 interface with a sheet resistance of 15 kΩ sq-1. The strong band bending induced at the c-Si surface was confirmed through capacitance-voltage measurements with a built-in voltage value of 683 mV. Besides low contact resistance, vanadium oxide films provide excellent surface passivation with effective lifetime values of up to 800 µs. Finally, proof-of-concept both-side contacted solar cells exhibit efficiencies beyond 18%, shedding light on the possibilities of TMOs deposited by the atomic layer deposition technique.

5.
Materials (Basel) ; 13(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142888

RESUMO

As optoelectronic devices continue to improve, control over film thickness has become crucial, especially in applications that require ultra-thin films. A variety of undesired effects may arise depending on the specific growth mechanism of each material, for instance a percolation threshold thickness is present in Volmer-Webber growth of materials such as silver. In this paper, we explore the introduction of aluminum in silver films as a mechanism to grow ultrathin metallic films of high transparency and low sheet resistance, suitable for many optoelectronic applications. Furthermore, we implemented such ultra-thin metallic films in Dielectric/Metal/Dielectric (DMD) structures based on Aluminum-doped Zinc Oxide (AZO) as the dielectric with an ultra-thin silver aluminum (Ag:Al) metallic interlayer. The multilayer structures were deposited by magnetron sputtering, which offers an industrial advantage and superior reliability over thermally evaporated DMDs. Finally, we tested the optimized DMD structures as a front contact for n-type silicon solar cells by introducing a hole-selective vanadium pentoxide (V2O5) dielectric layer.

6.
Beilstein J Nanotechnol ; 4: 726-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367740

RESUMO

The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300-1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450-1000 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...