Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542631

RESUMO

Recently, triboelectric nanogenerators (TENGs) have emerged as having an important role in the next wave of technology due to their large potential applications in energy harvesting and smart sensing. Recognizing this, a device based on TENGs, which can solve some of the problems in the liquid flow measurement process, was considered. In this paper, a new method to measure the liquid flow rate through a pipe which is based on the triboelectric effect is reported. A single-electrode flowing liquid-based TENG (FL-TENG) was developed, comprising a silicon pipe and an electrode coated with a polyvinylidene fluoride (PVDF) membrane. The measured electrical responses show that the FL-TENG can generate a peak open-circuit voltage and peak short-circuit current of 2.6 V and 0.3 µA when DI water is passed through an 8 mm cell FL-TENG at a flow rate of 130 mL/min and reach their maximum values of 17.8 V-1.57 µA at a flow rate of 1170 mL/min, respectively. Importantly, the FL-TENG demonstrates a robust linear correlation between its electrical output and the flow rate, with the correlation coefficient R2 ranging from 0.943 to 0.996. Additionally, this study explores the potential of the FL-TENG to serve as a self-powered sensor power supply in future applications, emphasizing its adaptability as both a flow rate sensor and an energy harvesting device.

2.
Polymers (Basel) ; 16(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399914

RESUMO

Pulsating flow, a common term in industrial and medical contexts, necessitates precise water flow measurement for evaluating hydrodynamic system performance. Addressing challenges in measurement technologies, particularly for pulsating flow, we propose a flowing liquid-based triboelectric nanogenerator (FL-TENG). To generate sufficient energy for a self-powered device, we employed a fluorinated functionalized technique on a polyvinylidene fluoride (PVDF) membrane to enhance the performance of FL-TENG. The results attained a maximum instantaneous power density of 50.6 µW/cm2, and the energy output proved adequate to illuminate 10 white LEDs. Regression analysis depicting the dependence of the output electrical signals on water flow revealed a strong linear relationship between the voltage and flow rate with high sensitivity. A high correlation coefficient R2 within the range from 0.951 to 0.998 indicates precise measurement accuracy for the proposed FL-TENG. Furthermore, the measured time interval between two voltage peaks precisely corresponds to the period of pulsating flow, demonstrating that the output voltage can effectively sense pulsating flow based on voltage and the time interval between two voltage peaks. This work highlights the utility of FL-TENG as a self-powered pulsating flow rate sensor.

3.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447740

RESUMO

Recently, there has been a growing need for sensors that can operate autonomously without requiring an external power source. This is especially important in applications where conventional power sources, such as batteries, are impractical or difficult to replace. Self-powered sensors have emerged as a promising solution to this challenge, offering a range of benefits such as low cost, high stability, and environmental friendliness. One of the most promising self-powered sensor technologies is the L-S TENG, which stands for liquid-solid triboelectric nanogenerator. This technology works by harnessing the mechanical energy generated by external stimuli such as pressure, touch, or vibration, and converting it into electrical energy that can be used to power sensors and other electronic devices. Therefore, self-powered sensors based on L-S TENGs-which provide numerous benefits such as rapid responses, portability, cost-effectiveness, and miniaturization-are critical for increasing living standards and optimizing industrial processes. In this review paper, the working principle with three basic modes is first briefly introduced. After that, the parameters that affect L-S TENGs are reviewed based on the properties of the liquid and solid phases. With different working principles, L-S TENGs have been used to design many structures that function as self-powered sensors for pressure/force change, liquid flow motion, concentration, and chemical detection or biochemical sensing. Moreover, the continuous output signal of a TENG plays an important role in the functioning of real-time sensors that is vital for the growth of the Internet of Things.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Eletrônica , Indústrias , Internet
4.
Polymers (Basel) ; 15(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37242966

RESUMO

This work introduces a novel approach for enhancing the performance of a triboelectric generator (TEG) by using a solid-liquid interface-treated foam (SLITF) as its active layer, combined with two metal contacts of different work functions. SLITF is made by absorbing water into a cellulose foam, which enables charges generated by friction energy during the sliding motion to be separated and transferred through the conductive path formed by the hydrogen-bonded network of water molecules. Unlike traditional TEGs, the SLITF-TEG demonstrates an impressive current density of 3.57 A/m2 and can harvest electric power up to 0.174 W/m2 with an induced voltage of approximately 0.55 V. The device generates a direct current in the external circuit, eliminating the limitations of low current density and alternating current found in traditional TEGs. By connecting six-unit cells of SLITF-TEG in series and parallel, the peak voltage and current can be increased up to 3.2 V and 12.5 mA, respectively. Furthermore, the SLITF-TEG has the potential to serve as a self-powered vibration sensor with high accuracy (R2 = 0.99). The findings demonstrate the significant potential of the SLITF-TEG approach for efficiently harvesting low-frequency mechanical energy from the natural environment, with broad implications for a range of applications.

5.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458300

RESUMO

Produced by magnetic material dispersed in a viscous environment for the purpose of collecting and converting energy, magnetic rheological compounds greatly strengthen the development of skin-attachable and wearable electrical equipment. Given that magnetic nanomaterial anisotropy has a substantial influence on the interface polarizing of polyvinylidene fluoride (PVDF), it is critical to explore the function of magnetic polymer compounds in the triboelectric layer of triboelectric nanogenerator (TENG) output power. In this study, ferromagnetic cobalt ferrite, CoFe2O4 (CFO), nanoparticles, and PVDF were employed to create a triboelectric composite membrane to improve TENG energy output. The content of ß phase in PVDF increased significantly from 51.2% of pure PVDF membrane to 77.7% of 5 wt% CFO nanoparticles in the PVDF matrix, which further increase the dielectric constant and negative charge of the membrane. As a consequence, the energy output of CFO/PVDF-5 TENG increased significantly with a voltage of 17.2 V, a current of 2.27 µA, and a power density of 90.3 mW/m2, which is 2.4 times the performance of pure PVDF TENG. Finally, the proposal for TENG hopes that its extraordinary stability and durability will provide additional views on hydrodynamic power generation in the future.

6.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267783

RESUMO

Liquid-solid triboelectric nanogenerator (TENG) has been great attention as a promising electricity generation method for renewable energy sources and self-powered electronic devices. Thus, enhancing TENG performance is a critical issue to be concerned for both practical and industrial applications. Hence in this study, a high-output liquid-solid TENG is proposed using a polyvinylidene fluoride surface polarization enhancement (PSPE) for self-powered streamflow sensing, which shows many advantages, such as adapt to the sensor energy requirement, multiple parameters sensing at the same time, eliminate the influence of ion concentration. The TENG based on PSPE film has the maximum power density of 15.6 mW/m2, which is increased by about 4.7 times compared to commercial PVDF-based TENG. This could be attributed to the increase of the dielectric constant and hydrophobic property of the PVDF film after the surface polarization enhancement process. Furthermore, the PSPE-TENG-driven sensor can simultaneously monitor both the physical and chemical parameters of the streamflow with high sensitivity and minimum error detection, which proves that the PSPE-TENG has enormous potential applications in self-powered streamflow sensing.

7.
Polymers (Basel) ; 12(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079063

RESUMO

Detection of volatile organic compounds (VOCs) is one of the essential concerns for human health protection and environmental monitoring. In this study, the blending fibers using a donor-acceptor copolymer were fabricated by electrospinning technique and subsequent UV/ozone treatment. The donor-acceptor polymers were polyaniline, P3TI, and poly(methyl methacrylate) (PANI/P3TI/PMMA) fibers with a cylindrical structure and uniform morphology. VOCs were directly adsorbed by the copolymer materials assembled onto a glass surface or metal framework scaffold. Under optimal conditions, the PANI/P3TI/PMMA fibers exhibit rapid response and high selectivity to VOC vapors within 30 min of UV/ozone treatment. Additionally, the optical transmittance changes of the freestanding fibers show significant improvement of more than 10 times to those fibers on glass substrates. It is speculated that the presence of P3TI leads to the formation of a heterojunction and increases the electron reception behavior. The modification of the electronic structure as exposed to VOC vapors tend to significantly alter the optical absorbance of the fibers, leading to the excellent sensing at low VOC concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA