Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 46: 108774, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478689

RESUMO

This article presents outdoor air pollution data acquired from the real-time Air Quality Monitoring Network (AQMN), which was established by the Healthyair project team in Ho Chi Minh City (HCMC), Vietnam. The AQMN is made up of six air pollution monitoring stations spread over the city (Traffic, Residential, and Industrial). Each station measures the same contaminants in the air, including PM2.5, TSP, NO2, SO2, O3, CO, and two meteorological factors, temperature and humidity. This data is crucial for air quality modelling, spatiotemporal analysis, correlation analysis, and assessing local air pollution around the city. The data was first obtained in minute frequency, then transformed and produced in hourly frequency for analysis and modelling. The PM2.5 data from this dataset was used to construct an hourly air quality PM2.5 forecasting model in the publication titled "AI-based Air Quality PM2.5 Forecasting Models for Developing Countries: A Case Study of Ho Chi Minh City, Vietnam" by Rakholia et. al. (2022).

2.
Environ Monit Assess ; 194(Suppl 2): 765, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255568

RESUMO

Can Tho city in the Mekong Delta is in the top ten areas affected by climate change. Therefore, assessing climate change impacts, social and economic activities require proposed solutions to respond to climate change. This study aims to (i) apply the MIKE 11 model (Hydrodynamic module and Advection-Dispersion module) to simulate the impacts of climate change scenarios on water resources in Can Tho city; (ii) calculate water balance in Can Tho city; and (iii) suggest climate change adaptation plan for sustainable social-economic activities of the city. The results show that when the rainfall changes due to climate change, the flow rate tends to decrease at high tide and increase at low tide. When the sea level rises due to climate change, the flow rate tends to increase at high tide and decrease at low tide. For 2030, the flow will decrease up to 15.6% and 14.3% at the low tide period for RCP 2.6 and RCP 8.5 compared to the present, respectively. The flow will increase up to 63.5% and 58.9% at the high tide period for RCP 2.6 and RCP 8.5 compared to the present, respectively. The water demand evaluation shows that the water resource reserve in Can Tho city meets water demands in current and future scenarios under climate change. While rainwater and groundwater can provide enough water in the rainy season, the city has to use surface water during the dry season due to a lack of rainwater. Of these, agriculture contributes the most water demands (85%). Eight adaptation measures to climate change for Can Tho city are developed from 2021 to 2050.


Assuntos
Mudança Climática , Recursos Hídricos , Vietnã , Monitoramento Ambiental , Água
3.
Sci Rep ; 10(1): 5827, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242043

RESUMO

Ho Chi Minh City (HCMC) is one of the cities in developing countries where many concentrations of air pollutants exceeded the Vietnam national technical regulation in ambient air quality including TSP, NOx, Ozone and CO. These high pollutant concentrations have destroyed the human health of people in HCMC. Many zones in HCMC can't receive more air pollutants. The objectives of this research are: (i) Air quality modeling over HCMC by using the TAPM-CTM system model by using a bottom up air emission inventory; and (ii) Study loading capactities of air pollutant emissions over Ho Chi Minh City. Simulations of air pollution were conducted in Ho Chi Minh City (HCMC), the largest city of Vietnam by using the TAPM-CTM model. The model performance was evaluated using observed meteorological data at Tan Son Hoa station and air quality data at the Ho Chi Minh City University of Science. The model is then applied to simulate a retire 1-year period to determine the levels of air pollutants in HCMC in 2017, 2025 and 2030. The results show that the highest concentrations of CO, NO2, and O3 in 2017 exceeded the National technical regulation in ambient air quality (QCVN 05:2013) 1.5, 1.5, and 1.1 times, respectively. These values also will increase in 2025 and 2030 if the local government does not have any plan for the reduction of emissions, especially, SO2 in 2030 also will be 1.02 times higher than that in QCVN 05:2013. The emission zoning was initially studied by calculating and simulating the loading capacities of each pollutant based on the highest concentration and the National technical regulation in ambient air quality. The results show that the center of HCMC could not receive anymore the emission, even needs to reduce half of the emission. Under the easterly prevailing wind in the dry season, the high pollution was more likely to be experienced in the west of Ho Chi Minh. In contrast, the eastern regions were the upwind areas and the pollutants could transport to the downwind sectors. It was recommended that the best strategy for emission control in HCMC is avoiding industrial and urban development in the upwind areas to achieve better air quality for both areas. In the case of necessity to choose one area for development, the downwind sector is preferred. The results show that TAPM-CTM performed well as applied to simulate the air quality in HCMC and is a promising tool to study the emission zoning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...